USA flag logo/image

An Official Website of the United States Government

DOD/DARPA SBIR 2012.2 3

SBIR Solicitation 2012.2

Printer-friendly version
Agency: Department of Defense
Branch: Defense Advanced Research Projects Agency
Program/Year: SBIR / 2012
Solicitation Number: 2012.2
Release Date: April 24, 2012
Open Date: May 24, 2012
Close Date: June 27, 2012
SB122-001: Controlling Antibiotic Resistant or Highly Virulent Pathogens Through Plasmid Curing
Description: OBJECTIVE: Develop a novel plasmid curing therapeutic capable of displacing antibiotic resistance and/or virulence causing plasmids from bacteria. Therapeutic interventions are sought that will be efficacious against a range of human pathogens of interest to the DoD. DESCRIPTION: The combined threat of the increasing prevalence of drug-resistant bacteria and a diminishing antibiotic pipeline places our warfighters at risk not only from health care associated and community acquired infections, but also from pandemics, emerging infectious pathogens and the intentional use of resistant pathogens for bioterrorism. One of the major routes by which bacterial pathogens become resistant to antibiotics and more virulent is through Horizontal Gene Transfer (HGT), which allows for genetic material transfer in the form of extrachromosomal plasmids from one cell to another. This phenomenon is capable of transferring resistance and/or virulence genes to normally antibiotic susceptible and avirulent bacteria. This creates a severe risk to front line antibiotic treatments, illustrated by the recent occurrence of isolates from methicillin-resistant Staphylococcus aureus (MRSA) that contain vancomycin resistance genes (in plasmid form) transferred from vancomycin-resistant enterococci (VRE). Likewise, G9241, a benign form of Bacillus cerus has acquired a B. anthracis virulence plasmid, demonstrating transfer of virulence plasmids by HGT. One way to reverse the resistance of emerging or engineered bacteria created by HGT may be to specifically target the plasmids being transferred between the cells, rather than using methods to directly kill the cells. This idea is known as Plasmid Curing. Proposals are sought that will develop novel plasmid curing therapeutics against plasmid encoded antibiotic resistant and highly virulent pathogens. Studies working with ESKAPE bacteria (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and bacteria that produce Extended Spectrum Beta Lactamase (ESBL) enzymes (Enterobacter and Escherichia coli)) are encouraged. The therapeutic should be clinically relevant and therefore shown to be non-toxic to humans and appropriate regulatory approval that would be needed in bringing forth such a therapeutic in the drug development pipeline should be considered. Developing such a safe intervention may help protect and provide appropriate treatment to our warfighters against the dangerous pathogens they encounter in theatre. PHASE I: Demonstrate via in vitro experiments that the proposed therapeutic is capable of removing any stable plasmid from a bacterial model (identified by proposer). Therapeutic approaches that are effective against both Gram (+) and Gram () will be prioritized. Metrics should demonstrate clearance and include clearance from two separate bacteria. If only partial clearance is achieved, state how this is still appropriate as therapeutic treatment. Propose an infectious in vivo animal model capable of assessing the health of the microbiome after treatment in addition to the efficacy of the treatment. Criteria also include providing details of the therapeutic; delivery method, proposed dosage, storage and stability, etc. Please note: Animal Subject Research (ASR) and Human Subject Research (HSR) are NOT expected or required for Phase I. PHASE II: Demonstrate the efficacy of the therapeutic to cure two plasmid containing pathogens of interest (identified by the proposer and relevant to the warfighter) that are either antibiotic resistant or virulent in an in vivo animal model. Demonstrate further the ability of the therapeutic to remove two or more plasmids from a pathogenic bacteria within the same animal model. Therapeutic approaches that are effective against both Gram (+) and Gram () will be prioritized. Appropriate toxicology studies of the therapeutic in an animal model to support an IND application should also be conducted. The overall health of the microbiome after use of the therapeutic in vivo should be described. Make sure to adhere to biosafety and ethical guidelines. PHASE III: Successful or promising approaches identified in Phase II would continue the development pathways for FDA approval and would support protecting the warfighter against such microbial threats. In addition, these therapeutics can be used as a medical countermeasure against any pathogen that may strike the general population. Phase III and IND approval would lead to appropriate clinical trials to gain FDA approval that may be funded through additional government and/or private funding sources. This SBIR Topic addresses the biomedical key technology area identified in the Defense Technology Area Plan from February 2003. Specifically drug resistant microbes are a significant current and future threat to US military personnel deployed overseas. Military personnel suffer significant life and limb threatening injuries and survive or resuscitated only to face months of hospitalization and multiple surgeries trying to combat extensively antibiotic resistant microbial pathogens. In the current military medical system we encounter microbes that are not responsive to any known antibiotics. In addition, naturally emergent or purposely engineered extensively antibiotic resistant microbes pose a significant threat to military operational activities. Most antibiotic resistance and many virulence genes are carried on portable and easily transferable circles of DNA called plasmids that live inside bacteria. Research and development under our topic will identify innovative ways of"curing"plasmids, that is, to directly attack the plasmids instead of the bacteria. Although high risk, if successful this approach could open a new way of countering biological threats.
SB122-002: High-resolution, Ultra-sensitive Magnetic Imaging Using an Ensemble of Nitrogen-Vacancy (NV) Centers in Diamond
Description: OBJECTIVE: Develop compact magnetic field imagers with nT/Hz^1/2 field sensitivity and sub-micron spatial resolution using an optically-addressed ensemble of NV centers in diamond. DESCRIPTION: Highly sensitive magnetic field imaging systems are important tools in both military and civil sectors, finding applications ranging from the detection of landmines and submarines to the high-resolution imaging of sub-cellular phenomena. State-of-the-art high-resolution magnetometers, Superconducting Quantum Interference Devices (SQuIDs), are frequently found in medical devices for magnetoencephalography (MEG) and magnetic resonance imaging (MRI). They can operate at the nT/Hz^1/2 level but are limited to micron resolution, require cryogenic environments, and consume high power. An attractive means of boosting the sensitivity and resolution of modern magnetometers in a room temperature, low power and rugged device, is to employ optically-addressed ensembles of NV centers in diamond. As well as supplanting SQUIDS in medical applications, such magnetometers, with sub-micron spatial resolution, could be used in the non-destructive imaging of integrated circuits for the presence of malicious circuits. NV centers are atom-like defects in diamond that are highly sensitive to magnetic fields despite being embedded in the solid state. In fact, operation at the pT/Hz^1/2 level has been demonstrated and it is expected that nm-scale resolution can be achieved [1-4]. This approach is particularly exciting for biological and neuroscience applications because it works under ambient conditions (room temperature and pressure) without significantly affecting the operation. Furthermore, ensemble NV magnetometry offers a large field-of-view, a robust, solid state system and low noise optical preparation and detection. Because sensitivity scales as the square root of the number of NV centers [5], ensembles are essential to achieving high-sensitivity over a broad area. While impressive results have been obtained in the laboratory, significant development is necessary to construct a robust packaged imaging system with high-NV density and sufficiently narrow inhomogeneous broadening, reduced background noise and efficient collection efficiency. Methods of achieving the critical properties of a magnetic imager could include, but are not limited to, an improved collection efficiency with solid-immersion lenses [6], side collection schemes or anti-reflection coatings; reduced background noise with IR absorption spectroscopy [2] in a low finesse resonant cavity or obtaining high resolution with STED spectroscopy [7]. PHASE I: Design a robust packaged magnetic field imaging system with an ensemble of NV centers in diamond. Such a system should include high-grade diamond with NV ensembles with long coherence times, a novel imaging system with high-resolution, and optimized NV collection efficiency over a broad area. The chosen work must be compatible with an imaging system that has 1-10 nT/Hz^1/2 ac sensitivity and a 10-100 nm spatial resolution. Exhibit the feasibility of the approach through a laboratory demonstration. Phase I deliverables will include a design review including expected device performance and a report presenting the plans for Phase II. Experimental data demonstrating feasibility of the proposed device is favorable. PHASE II: Fabricate and test a prototype device demonstrating the device performance outlined in Phase I. The Transition Readiness Level to be reached is 5: Component and/or bread-board validation in relevant environment. PHASE III:Compact magnetic field imagers at the submicron level could have applications in the non-destructive imaging of integrated circuits for the presence of malicious circuits and neuronal and brain imaging. Operation at room temperature may lead to numerous applications in the imaging of living tissue such as imaging the structure and composition of proteins and molecules possibly in real time, informing the development of pharmaceuticals. Innovations in Phases I and II will enable such devices to transition out of the laboratory and into fieldable devices.
SB122-003: Minimally Invasive, Self-Collection of Large Volume Biospecimens
Description: OBJECTIVE: Develop advanced technologies that can be self-operated by a patient or a minimally trained operator to collect large volumes/weights of a biospecimen for clinical use, such as diagnostic and remote clinical trials, or for research applications such as biomarker discovery/validation. The majority of diagnostic tests and research assays require blood biospecimens that are traditionally collected using phlebotomy techniques performed by trained personnel. In limited resource areas, such as DoD deployment locations, remote or impoverished geographic areas, or emergency response locations, absence of blood sample collection by a trained phlebotomist can be a significant limitation to clinical care. Lancet or finger stick blood collection methods are one solution to minimize the need for these resources but suffer from low biofluid volumes that statistically may not contain the biomarker(s) of interest at the concentrations necessary for detection or clinical correlation. See reference #1 for examples of proteins in blood. Solutions are sought that enable the simple self-collection of sufficient biospecimen volumes or weights for the detection of low abundance diagnostic biomarkers. All biospecimens are of interest and include blood, sweat, tears, etc. Technologies developed should be minimally invasive, simple to operate, and allow for remote self-collection of a sufficient sample volume (e.g.>100 microliters for blood) or weight, to allow for detection of a low-abundance panel of biomarkers at a reference laboratory or point-of-care setting. Potential users include minimally trained individuals and medics in settings where phlebotomy is not available. If the technology is successfully developed, the capability to statistically capture low abundance biomarkers by increasing the amount of biospecimen collected in low resourced settings is anticipated to widely improve clinical care and biomedical research by enabling remote clinical trials, distributed remote access diagnostics, public health surveillance and biomarker research. DESCRIPTION: There is the need for technologies capable of collecting patient biospecimens at sufficient volumes or weights, in a manner that allows for statistically relevant clinical guidance after the sample has been processed and analyzed. At the same time, enabling the capability to self-collect a biospecimen could provide a means to more confidently diagnose or track disease at its earliest stages, provide an ability to better expand clinical trials into remote settings, and increase the diversity of population cohorts needed for biomarker research. For example, blood biospecimens are the biofluid of choice for most diagnostic applications but require trained phlebotomists to collect and process. Simultaneously, there has been a push towards the miniaturization of detection technologies (eg."lab-on-a-chip"and"nano-bio"technologies), but there has been a disconnect between sample acquisition and downstream analysis in a manner that allows for the detection of low abundance analytes. Aggressive low volume scaling through finger-stick or lancet components affords clear advantages for sample preparation, reagent usage, thermal load, manipulation, and reaction kinetics, but there is nevertheless the challenge of dealing with"the law of small numbers", or Poisson"s Distribution, which indicates that for small biospecimen volumes there may be no targets available for amplification or detection. In other words, diagnostic instruments may be developed that are small, portable, and require only a few drops of blood, but if the target analyte is not present in the small volume, the test could be susceptible to false negatives or not provide sufficient statistical confidence to provide clinical guidance. Additionally, biospecimens other than blood, such as sweat, interstitial fluids, or tears may have the potential to be a powerful natural repository of clinically relevant biomarkers but there lack the technologies for self-collection and concentration. Technologies that offer the simplicity of a finger stick device (as an example) with the capability to collect larger biospecimen volumes or weights would overcome a diagnostic hurdle that limits widespread diagnostic testing outside of traditional clinical settings such as a clinic or hospital. Therefore, proposals are sought that address large volume (eg.>100 microlitersfor blood) or weight biospecimen collection via a device that is simple to operate and minimally invasive. The design should consider minimally trained individuals and medics as potential users. Proposers are encouraged to consider methods and technologies compatible with clinical workflows, good laboratory practices (GLP), and good manufacturing practice (GMP) procedures. PHASE I: Demonstrate feasibility of methods or technologies for large volume or weight collection. Proposers must address both the volume/weight of biospecimen collected, as well as address how device operation is conducted under conditions of minimal invasiveness and ease-of-use. Proposers should aim to collect as large a volume or weight as possible (eg. at least 100 microliters for blood) while retaining the capability for operation by a minimally trained user. Collection devices may be designed to hold the collected biospecimen within the device or to dispense the biospecimen into an instrument or alternate storage device. Proposers should demonstrate initial designs and collection volumes/weights, and project Phase II collection volume/weight capabilities. Proposals that demonstrate universal compatibility for downstream analysis under a wide dynamic range of analytes are preferred. Of interest are quantitative metrics measured with a variety of protein, nucleic acid, metabolic and/or other analytes relevant to human biology. Phase I efforts should justify the applicability to settings such as home use, and consideration of FDA regulations is encouraged. PHASE II: Phase II efforts should quantify collected biospecimen volume/weight and address reproducibility of the collection volume/weight with different prototypes under similar and different conditions. Detection of a panel of well-characterized, low abundance biomarkers should be demonstrated from collected samples using standard laboratory practices. Of interest are quantitative metrics measured with a variety of protein, nucleic acid, metabolite and/or other analytes relevant to human biology. Phase II efforts should evaluate the device effectiveness and reproducibility when operated by untrained users. Additional interests include demonstrations that the proposed technology is developed to include standardization/normalization of the biospecimen to reference analyte concentrations across collections, with sensitivities that can address sample variability. Manufacturing designs and costs should be considered for all components of the device. Compatibility of the collection device with downstream biospecimen storage devices and/or analysis technologies should be considered. Device potential for FDA clearance as a blood collection device for home use or physician office settings should be described. PHASE III: The technology to be developed should enable blood collection outside of a major clinical facility and therefore could have significant impact on the clinical diagnostic market. There is a significant commercial market for medical diagnostics and home-use physician-office based diagnostic testing is a growing element of this market. The developed technology would potentially allow collection of sufficient sample in such settings, as well as enable clinically valid diagnostic testing and biomarker research. Potential commercial partnerships/customers include major diagnostics companies and life sciences research technology companies. The technology to be developed is critical for DoD, as many medics have minimal training. Development of a FDA-approved collection device could enable use of newly developed diagnostic tests in remote/deployment settings as well as expand the military capabilities to perform more effective clinical trials of new therapeutics and diagnostics in remote settings or expand capabilities to detect and track emerging disease. Potential transition customers include Center for Disease Control and Prevention, Air Force Surgeon General, Military Health System - Defense Medical Research and Development Program (MHS DMRDP), Military Infectious Diseases Research Program (MIDRP), and the commercial sector.
SB122-004: Blending Skills Training and STEM Education: Game-Based First-Responder Application
Description: OBJECTIVE: Develop a mobile application that uses innovative game-based strategies and visualization techniques to teach medical first-responder skills combined with intelligent tutoring systems to teach underlying STEM principles. Game design, architecture, and research approach should allow for the optimization of pedagogical approaches based on performance of the individual learner and across a large population of users. DESCRIPTION: Computer-based medical training applications are usually developed to mimic skill sets that would normally require a live patient or manikin rather than considering what a computer provides that these methods do not. Thus, medical simulations have focused heavily on training specific skills and techniques as a surrogate to other modes of training. However, computer game-based technologies provide the opportunity to combine skills training with generalizeable educational principles. For example, instead of simply providing instruction on where to apply a tourniquet, a computer-based system can reinforce the lesson with demonstrations and discussion of the underlying physiology of the circulatory system. Thus, a student may learn why wounds in slightly different locations respond differently or why applying pressure in certain conditions is essential. The game-based approach also allows for integrating the lessons into dramatic and engaging scenarios. Combining skills training with the underlying STEM principles from biology/physiology should more readily allow for the generalization of the skills to novel situations. This tool is envisioned for both medical training and in basic civilian education science classes. The goal is to create a game-based application on mobile platforms to teach first responder principles that integrates intelligent tutoring systems to not only teach basic skills, but answer the underlying questions of why a student should or should not have responded the way they did. Using this application, students should learn BOTH basic skills and also basic principles of human physiology. Thus, this can be used as a classroom resource for science education as well as a resource to teach medical skills for first responders. The underlying architecture should allow for the analysis and optimization of the software to both the individual user and across the entire population of users. We are not seeking standard computer-based learning systems, but game-based interactive systems that are engaging and challenging to the user. Design and development should be to professional game standards and the proposed game concepts should be compelling, innovative, and designed to motivate users for continued interactions. Innovative approaches for visualization and interaction with these different types of information are required. The system should educate, train, and assess the student"s knowledge. The patient models should respond accurately and be based on underlying physiology models that respond appropriately to both injury and treatment. The simulation should include a case editing tool that instructors and students can use to customize injury scenarios. The system should be developed in such a way to allow customization of options for basic first responders with limited resources to more advanced options for Corpsmen/Medics/EMTs. Proposals must reflect team expertise in medical training (military and civilian), education, and game production. Teams that do not reflect a balance between these skill sets will not be considered. Proposals should clearly outline proposed development tools, design standards, educational approaches, and validation strategies. Proposals must also discuss details of transition strategy and market opportunities. PHASE I: Identify the exact training/education goals of the prototype system and metrics for success. Develop the conceptual design and framework for the proposed system. At a minimum, provide extensive storyboards outlining gameplay, user interface, and user interactions. Develop detailed strategies for using this application for medical training and in the classroom. In preparation for Phase II, develop a robust methodology with clear metrics for assessing usability, user acceptance, and effectiveness of the application. It is important to note that there will be no human use testing in Phase I. PHASE II: Develop, demonstrate, and validate an initial prototype on mobile-based software platforms that can be used in a variety of educational/military environments. The required deliverable for Phase II will include: the prototype system, demonstration and testing of the prototype system, and a Final Report. The Final Report will include (1) a detailed design of the prototype mobile, game-based application(s) tool sets, (2) the experimental results from such toolsets, and (3) a plan for Phase III. PHASE III: Delivery of a complete game-based mobile application with validated pedagogical efficacy that is engaging and ready for integration into identified learning environments. Scenarios should be applicable to civilian first-responder training. Application should be available for licensing or download. Delivery of a complete game-based mobile application (IOS/Android) with validated pedagogical efficacy that is engaging and ready for integration into identified learning environments. Scenarios should be applicable to first-responder scenarios encountered by military personnel.
SB122-005: Innovative Passivation to Increase the Power at Which Laser Diode Fails
Description: OBJECTIVE: Improve the reliability/lifetime and increase power and performance of high power laser diodes (LD). DESCRIPTION: There is a compelling need for substantially increasing the power and brightness of LD optical-pumps in the 9xx nm spectral range for scaling single-mode narrow-line fiber lasers to high power for DoD high energy laser (HEL) applications. The power and brightness of state-of-the-art LDs are severely limited by catastrophic optical-damage (COD) at the front facet. COD severely limits the power/bar that could be attained and hence a larger number of LD bars are required for a given LD pump power. The larger number of bars increases system complexity and decreases efficiency of the high power laser system. In addition it results in an increase in size, weight and cost of the laser system. The focus of this SBIR is to significantly improve the reliability of high-power semiconductor LDs so they can be reliably operated at 6-7X higher power density per bar than the present state-of-the-art. Specifically, state-of-the-art 980nm, 20 percent fill-factor, 10mm wide bars operate at approximately 70W. Achieving this goal of 400-500W/bar may directly impact DARPA"s high-power fiber lasers such as Revolution in Fiber Lasers RIFL by increasing the specific power of laser diodes pumps from the present 1kW/kg to 6-7kW/kg. Since LD pumps contribute about 50% of the cost and weight of the high power laser system, increasing the specific power (kW/kg) will have a significant impact on the size of the high energy laser system. In addition, the cost of the laser diode pumps is inversely proportional to the power/bar and increase of 6-7x in power that could be obtained from a bar decreases the cost by a similar factor. The weight and cost of LD pumps is estimated to be approximately 50% of the laser system so decreasing them by 6X will decrease the all-important weight and cost of the HEL by 40%. This technology will also provide similar benefits to the HEL solid-state lasers. PHASE I: Determine the technical feasibility of the growth of a single-crystal passivation layer on the (110) facet of a 9xx laser diode formed at low temperature and in ultra-high vacuum. Current passivation techniques are either amorphous, resulting in significant residual surface state density within the bandgap, or require high temperature growth which degrades the Ohmic contacts. Low temperature growth (<= 400 degrees C) is therefore required to ensure compatibility with existing laser diode processing and ultra-high vacuum (<1e-9 Torr) is required to prevent oxidation of the cleaved surface. The passivation layer should fully passivate the facet and prevent the defects. It should also prevent absorption of the laser line. Phase I deliverables will include a demonstration of lattice matched high band-gap crystal growth on the cleaved end of the GaAs laser diode. PHASE II: Develop, demonstrate and validate reliable operation (500hr) at 500W of a 10mm-wide, 980nm laser-diode bar with fill-factor =20% with innovative passivation demonstrated in Phase I. PHASE III: High-power LDs have a large $3 billion market that is growing at 20 percent annually. The technology developed in this SBIR may be a valuable asset for this market as it should significantly decrease the all-important cost or dollars/watt by 6X. The passivation technology developed under this SBIR may have an impact on DoD HEL systems that use LD pumps.
SB122-006: Ultra-Bright Diode Laser Emitters for Pumping High-Power Fiber Amplifiers
Description: OBJECTIVE: Demonstrate a wavelength-stabilized diode laser system for pumping high-power fiber laser amplifiers consisting of diode laser emitters that are at least ten times brighter than conventional broad-stripe emitters. DESCRIPTION: High average and peak power fiber lasers and amplifiers offer an attractive combination of high efficiency, near diffraction-limited beam quality, low phase noise, and reliable operation. They have found wide use in industrial and scientific applications ranging from cutting and welding to gravitational wave detection, and their small size makes them promising candidates for defense applications such as laser-based weapons and long-range lidar on airborne platforms. Fiber laser and amplifier systems can also be scaled to even higher power using coherent or spectral beam combining [1], but two competing nonlinear processes limit the power available from a single continuous-wave fiber amplifier and, by extension, the power from a beam-combined system. To achieve good efficiency, both coherent and spectral beam combining require the fiber lasers and amplifiers to have a narrow spectral bandwidth, but these narrow-band systems are very susceptible at high powers to stimulated Brillouin scattering (SBS), which is a nonlinear process that can scatter significant power backwards into the laser system. Several approaches have been used to suppress SBS, but the most common is to utilize short fibers with large cores to reduce the interaction length and lower the Brillouin gain [2]. Recently, a new modal instability has been identified that drastically reduces the output beam quality and limits the useful power from high-power beam-combinable amplifiers [3]. Experimental data show that a significant amount of signal power is coupled into higher-order optical modes of the fiber core and/or cladding when the average amplifier power exceeds a threshold on the order of 1 kW. Theoretical investigations into the mode-coupling mechanism and ways to mitigate it are not yet conclusive [4]. Smaller cores with fewer modes would reduce this instability but at the expense of higher Brillouin gain. One approach to reducing both SBS and modal instabilities is to use extremely short fibers with narrow cores that guide only a few modes, at most. However, short double-clad fibers require extremely bright pump lasers that are spectrally narrowed and locked to match the gain fiber's absorption peak in order to efficiently absorb the pump light. Currently, state-of-the-art fiber-coupled diode pump lasers are limited to an ex-fiber brightness of ~25 MW/cm2sr, corresponding to 100 W from a fiber with a 105-µm core and 0.12 NA (numerical aperture) without wavelength stabilization [5], but this fiber-coupled spatial brightness is significantly lower than the record of 1 GW/cm2sr for a single diode laser [6,7]. This SBIR topic seeks innovative approaches to realizing a high-power wavelength-stabilized fiber-coupled diode laser system that employs extremely bright emitters to achieve an ex-fiber brightness>100 MW/cm2sr. The resulting pump laser module could be transitioned to multiple government-funded high-power laser programs or commercialized as a part of systems targeting industrial laser cutting applications. PHASE I: Demonstrate a single diode laser operating at ~976 nm with output power>10 W, spatial brightness>1 GW/cm2sr, and electrical-to-optical efficiency>52%. All three performance metrics should be achieved simultaneously on a single device. Develop a concept to package several of these emitters into a single wavelength-stabilized module that can achieve the Phase II performance metrics. PHASE II: Construct and demonstrate a prototype laser system suitable for pumping high-power fiber lasers based on the Phase I module concept and diode emitters. The key performance goals are: 1) fiber-coupled power>500 W continuous-wave, 2) ex-fiber spatial brightness>100 MW/cm2sr, 3)>42% ex-fiber electrical-to-optical efficiency, 4)<0.25 nm full-width half-maximum output spectrum*, 5)Δλ/ΔT<0.07 nm/°C, 6)Δλ/ΔP<0.03 nm/W, and 7) specific weight<1 kg/kW of fiber pump power delivered. Conduct a preliminary reliability assessment. The final Phase II system should be at Technology Readiness Level 6. *The narrow spectral width is to allow the future potential for spectral beam combining to even higher spatial brightness within the narrow absorption peak of Yb-doped silica (~7 nm bandwidth). PHASE III: Industrial applications include metal cutting, welding, and marking. A laser module meeting the Phase II metrics would have sufficient power and brightness for entry-level cutting applications, and several Phase II modules could be spectrally combined into a single kW-class fiber-coupled cutting system. Direct-diode lasers are of significant industrial interest because of their potential for higher reliability, better efficiency, and lower complexity than competing solid-state and fiber lasers [8]. Military applications include lidar and directed-energy weapons, and the Phase II technology could be readily transitioned to multiple government directed-energy programs, including ongoing high-power fiber laser programs funded by DARPA and HEL-JTO, such as Excalibur or RELI. Once delivered, a fiber-coupled Phase II module could be readily spliced into an existing high-power fiber amplifier system, and new laser systems could be designed to exploit the brightness of these pump lasers. Since light-weight packaging would be developed during Phase II, Phase III development activities might include increasing output power, improving efficiency, and/or modifying the module for alternative thermal management techniques (e.g. phase change materials or spray cooling).
SB122-007: Foliage Propagation Model Development to Support New Communications Concepts
Description: OBJECTIVE: Develop detailed foliage propagation models applicable to multiple environments that will support creation and analysis of new communications concepts that greatly exceed the operational performance of current systems in these environments. DESCRIPTION: The need for propagation models that extend beyond free space and urban environments into foliage-rich environments is well-known. The rising need for communications in forests, jungles and triple canopy environments shows the importance of characterizing these RF environments. This will allow for real-time situational awareness, sensor and command and control data throughout the entire battle space. Traditional communications through dense foliage and vegetations is challenged by severe multipath and attenuation thereby limiting the warfighter"s access to critical data. There is little to no data on RF propagation across the entire frequency spectrum through the various foliage elements and current models, such as FOREST, typically view foliage environments as a uniform dielecteric slab and are limited by the assumptions that they treat forests as reasonably uniform, the floor as absorptive, and only address frequencies up to approximately 1 GHz. A model is needed that can address the entire range of spectum, including current military radio systems, new 4G wireless technologies, millimeter wave communications (30-300 GHz), and can be equally applied to forest and jungles that are assumed to be non-uniform. A more thorough understanding of how RF signals act in these areas will allow for a communications concept to be developed that will overcome these challenges and limitations. The model will be combinable with other RF models to create a single, comprehensive RF propagation model. PHASE I: Perform a study on RF propagation through various types of foliage and provide the framework for a comprehensive foliage propagation model. The study should analyze the effects of multipath, attenuation and dispersion and be capable of statistical characterizations of system performance. It should analyze current limited models to decide if these models can be leveraged to support the new model and investigate other technologies that may provide indirect information that could be utilized or adapted such as information from LandSat imagery or foliage penetrating radars. This analysis will include RF properties from multiple types of foliage, trees and vegetation to provide a basis for the study. Phase I should result in the framework for a comprehensive foliage propagation model in Phase II. PHASE II: Develop a comprehensive foliage model to accurately predict RF propagation through multiple types and densities of vegetation. The model will be validated and tested using government provided emperical data as well as real-world measurements obtained from field testing in various enviornments across the full spectrum of frequencies. The model will then be used to support a separate research and development program of new communications technologies and systems with performance capabilities beyond current systems operating within these environments, e.g. increased communications range, accuracy, capacity, bandwidth and reduced equipment size, weight and power. Phase II will result in a comprehensive, working foliage penetration model that can be applied to current and future communications systems in these type environments. The technology readiness level at the end of this phase will be a minimum Level 6. PHASE III: The system should be applicable to commercial and homeland security operations in dense, foliage-rich environments. A military prototype communications system, based on the results found from the Phase II foliage propagation model, should be designed, field tested and verified. Potential interested military organizations include the Defense Spectrum Organization (DSO) and CERDEC"s Space&Terrestrial Communications Directorate, specifically the Antennas&Spectrum Analysis Division.
SB122-008: High Amperage Large-scale Electrical Energy Storage
Description: OBJECTIVE: Demonstrate megawatt (MW) scale electrical energy storage at high charge and discharge rates, high cycle life, and high energy density. DESCRIPTION: Electrical power is transient in nature and effective storage of megawatt scale power is a critical technology to enable forward operating base (FOB) level power management. Currently available batteries are not effective solutions with inadequate large scale energy storage, rapid recharge/discharge capabilities, and cycle life. These deficiencies preclude their use for vehicle portable large scale storage and limit the utility of renewable power sources which are subject to large fluctuations. An effective solution has the potential to impact a variety of applications, such as load leveling of power grids to providing uninterruptible backup power, and reduce the logistical burden associated with fuel for power generation at critical DoD bases and FOBs. In addition, large scale power storage technology will enable the use of renewable power generation including photovoltaics or wind power. This SBIR topic seeks new high-performance energy storage solutions that will reduce fuel dependence for power generation at FOBs. PHASE I: Prepare a feasibility study of an energy storage concept. Proof of concept demonstration with the following system level properties: lifetime>1,000 cycles,>100 Wh/kg,>0.3 kWh/l,>1 MW charge and discharge rates, and storage efficiency over 24 hours>90%. The technology should have a path to: lifetime>5,000 cycles,>150 Wh/kg,>0.5 kWh/l,>1.5 MW charge rate, and storage efficiency over 95%. As part of the final report, plans for Phase II will be proposed. PHASE II: Finalize the Phase I design and deliver two 150 kWh prototype systems for government evaluation. Target Transition Readiness Level at the end of Phase II: 4. PHASE III: High performance MW scale energy storage systems have both military and commercial dual use applications for uninterruptable power systems, for power grid load leveling, and for energy storage from renewable power generation systems.
SB122-009: Human-centric Coalition Space Situational Awareness
Description: OBJECTIVE: Demonstrate a cognitive-centric User-Defined Operational Picture (UDOP) capability that allows multi-national teams to maintain a common understanding of the space situation. DESCRIPTION: This effort will apply cognitive science technology to develop human-system interfaces for a multi-national space operations center with a focus on Intelligence, Surveillance and Reconnaissance (ISR). This area is critical to space situational awareness (SSA) and a focus area for the Air Force, DARPA, and overall national security. The U.S.-centric Joint Space Operations Center (JSpOC) is quickly becoming a multi-national Coalition Space Operations Center (CSpOC). These multinational forces do not always have access to the same information and yet they need a common situational understanding to make informed joint decisions. Differences in cultures, security levels, collaboration preferences, tactical priorities, and information accessibility pose unique cognitive science challenges for human-system interface design. Applying innovative cognitive science solutions to the problem such as work-centered/sensemaking support and visual analytics could positively impact routine operations and dramatically impact operations during contingencies when human-to-human coordination needs to happen quickly. Effective coordination among multi-national forces requires continuous and rapid information sharing, group problem solving, error-checking, and progress monitoring. All of these and possibly other capabilities are needed to support independent and interdependent tasks for plans, operations, intelligence, and communication. These team members will need a decision-centric environment supporting work flows and processes. Additionally, team members separated by security levels and/or geography will need an extension of the UDOP concept for their collaborative work environment where they can generate shared understanding and synchronize collective Command and Control (C2) and ISR activities and missions. Innovative technology is needed to identify and navigate multi-national teams through relevant human-centric issues allowing effective, accurate, and timely collaboration and information sharing. This tool will provide the underpinnings of multi-national force collaboration strategies allowing teams the ability to provide C2 information to Allied Force commanders. A few issues of concern might be: (1) human-computer interface differences, (2) multi-level security, (3) cultural differences, (4) language and terminology, (5) working and learning environment differences and preferences, and (6) command structure differences and preferences. Ultimately what needs to be defined and navigated through is the difference between JSpOC and CSpOC working environments for improved SSA. This effort will confront multi-national issues for the JSpOC Mission System (JMS) before the system, and in particular the UDOP, become too big to incorporate changes. PHASE I: Design a concept for a human-computer interface that supports multi-national space situational awareness with a focus on ISR. Other areas are also performed jointly including Position, Navigation, and Timing (PNT), Satellite Communication, Missile Warning, and Environmental Monitoring but these would be considered above and beyond the scope of this effort. The end product of this phase will include a technical report that outlines the approach for Phase II and the completed system. The concept description will need to address how the technology will integrate with or augment existing capabilities used in space operations centers. PHASE II: Develop, demonstrate and validate the human-system interface software in a relevant environment that closely corresponds to an actual multi-national space operations center. By successfully demonstrating in a relevant environment, the software should obtain a Technology Readiness Level of 5. PHASE III: With the expanding global satellite services industry, multi-national space operations are not unique to the military. This capability will also be valuable to the commercial space industries that need to coordinate operations across multi-national companies. The software will interface with many other space monitoring and information tools, yet maintain a unified look and feel for the user. In addition to the software, the small business could be in a good position to act as a consultant for any enterprise interested in multi-national space operations.
SB122-010: Space Signatures for Rapid Unambiguous Identification of Satellites
Description: OBJECTIVE: Define and demonstrate approaches to establish and maintain rapid and reliable positive object identification of individual satellites in orbit through sparse but regular data collection. DESCRIPTION: Current methodologies supporting the maintenance of the satellite catalog based upon information derived from the Space Surveillance Network are inadequate to enable a proactive approach to certain issues relevant to Space Situational Awareness (SSA). Among the challenges for SSA is the capability to maintain active custody of individual satellites. Some objects are frequently lost and sometimes serendipitously reacquired without recognition of its previous catalog existence unless manpower-intensive analysis intervenes to uncover the situation for some cases. Maintaining custody of a large number of satellites is a leap in capability requiring innovative solutions that are amenable to automation in order to be feasible for implementation. The challenge of maintaining custody is magnified in certain crowded regions of space by the sheer number of objects present, the fact that most active satellites perform periodic but unannounced maneuvers for orbit and/or attitude corrections, dynamical models are approximate, and a certain number of faint objects are marginally detectable thus forming a sort of background clutter. Active custody encompasses the indication for when objects are missing, action to identify and search likely regions for reacquisition, and positive identification of a reacquired object as the previously missing object. Timeliness and accuracy in the identification of reacquired objects are key performance metrics. Positive identification of satellites is linked to defining signatures that are predictable and uniquely indicating the presence of some feature(s) of an object, manifesting from its physical and/or operational attributes. For objects in space, signatures may stem from any observable phenomenology that may be remotely sensed from ground-based or space-based instrumentation. A collection of appropriately selected signatures may be sufficient to unambiguously identify individual satellites, even among those of common manufacturers and of similar bus types. Combining signature information with orbital dynamics modeling may increase confidence in the identification of reacquired objects. PHASE I: Develop an initial concept design and model key elements for a feasible approach to establish and maintain positive identification of individual satellites, including active payloads and tumbling objects. Phase I deliverables will include a detailed report of the chosen approach. PHASE II: Develop, demonstrate, and validate through high simulation and/or real data if suitable test cases are available the approach proposed in Phase I. Develop a detailed mathematical or parametric relationship between available observation data and the probability of maintaining custody. Initial target TRL at beginning of Phase II effort is 2, and target TRL at conclusion of Phase II is 5. Required Phase II deliverables will include documented algorithms, detailed reports of validation efforts and findings, and software implementations used to demonstrate and validate the approach. PHASE III: Most likely path for transition of this effort is through the Joint Space Operations Center (JSpOC) Mission System (JMS) with the end user being the JSpOC. Additional efforts may be required to mature the technology to TRL 6. Potential commercial applications include establishing attribution for radio frequency interference or any other actions that may result in loss of service to the detriment of a payload operator.