USA flag logo/image

An Official Website of the United States Government

Radar Imaging Guidance

Printer-friendly version
Topic Number: 
N132-107
OBJECTIVE: Develop a radar algorithm to allow simultaneous tracking and imaging for Pulse Doppler radar systems. DESCRIPTION: Future radar guided precision munitions and radar sensor suites would benefit from the ability to use radar tracking data developed from Moving Target Indication (MTI) detections and high resolution imaging waveforms for Automatic Target Recognition (ATR) on High Range Resolution (HRR), Synthetic Aperture Radar (SAR), and Inverse Synthetic Aperture Radar (ISAR) images. Currently radar seekers must take time away from the tracking function to image the target. This causes the quality of the track information to be degraded. The time required to generate radar images varies as a function of wavelength and radar sensor speed and angular rate, and can vary from a few seconds to tens of seconds depending on the system application. For radar seekers utilizing radar Intelligence, Surveillance, and Reconnaissance (ISR) of highly valued moving targets in dynamic environments, losing track data for several seconds could cause a loss of target track. Waveforms and algorithms are needed that can simultaneously develop tracking data from the high resolution ATR quality target images. PHASE I: Develop and demonstrate the feasibility of a concept for Radar Imaging Guidance. Design the system architecture content, waveform and high level algorithm. PHASE II: Develop and demonstrate a prototype Radar Imaging Guidance system on an existing seeker testbed. Develop a PC based simulation that exercises the algorithms. PHASE III: Finalize the technology and transition to the appropriate platforms and the Fleet. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: Simultaneous MTI and radar imaging can benefit all-weather border control and perimeter surveillance applications. REFERENCES: 1. Dunn III, R.J., Bingham, P.T., & Fowler, C.A. (2004). Ground Moving Target Indicator Radar and the Transformation of U.S. Warfighting (Analysis Center Papers). Northrop Grumman. Retrieved from http://www.es.northropgrumman.com/solutions/f16aesaradar/assets/gmti.pdf 2. Nathanson, F.E. (1969). Radar Design Principles: Signal Processing and the Environment. New York: McGraw-Hill Book Company.