You are here

Manufacturing and Strength Improvement for Thick Carbon-Carbon Laminates

Description:

This topic is eligible for the DARPA Direct to PHASE II Pilot Program. Please see section 7.0 of the DARPA instructions for additional information. To be eligible, you must submit documentation which demonstrates that PHASE I feasibility (as described in PHASE I below). Offerors must choose between submitting a PHASE I proposal OR a Direct to Phase II proposal, and may not submit both for the same topic. OBJECTIVE: Develop robust manufacturing and strength improvement concepts for 2D laminate hot load bearing carbon-carbon structures. DESCRIPTION: The aerospace community has recently been successful in making complex large scale, hot structure (>3000 deg), carbon-carbon (C-C) assemblies for high speed aerospace vehicles. Future vehicle designs will push the limits of C-C material capabilities requiring a continued effort to characterize and improve the performance, robustness, availability, and affordability of integrated airframe structures fabricated using this material. Large scale assemblies drive the current state of the art due to the unique set of challenges they present, in particular thick aerodynamic and thermal load carrying laminates. Technology development is required to produce stronger, more reliable, and more producible thick parts (reduced manufacturing time and cost) and thermo- mechanical stress models, as well as higher resolution and more informative non-destructive evaluations. Once developed, the structural properties and techniques will have an immediate impact on production time and vehicle weights, which will translate into quicker lead times and turnaround for multiple vehicle flight test programs. The purpose of this SBIR is to improve the strength and consistency of thick C-C laminates used on large scale, load bearing airframe structures. With strength properties as the focus of improvements, improved properties will give more analytical confidence during the design phase of programs. The manufacturing techniques developed in the proposed program can also immediately be incorporated on current programs to increase margins in the most critical load areas. The offeror must demonstrate a clear understanding of carbon-carbon processing technology of hot structures as applied to flight testing of hypersonic systems. Coinciding with improved strength properties, developing methods to rapidly make the thicker parts and confirm quality assurance are priority in the proposal. PHASE I: Evaluate the in-process stress states of thick Carbon-Carbon laminates in order to optimize their fabrication, leading to improved strength properties and faster production. In parallel, identify and assess innovative non-destructive methods for evaluation of Carbon-Carbon laminates and structures to be employed in subsequent work to characterize and assure the quality of the laminates and the subcomponent structures. Identify and evaluate existing and developmental material systems (e.g. fabric, heat treatment, resins, etc.) and identify and assess new methods as well as improvements to existing methods of creating thick C-C laminates in order to increase the mechanical properties and decrease the fabrication time. Prioritize and rank these methods and provide plans to develop and demonstrate those improvements. Conduct and report testing as needed to support these assessments. The PHASE I deliverables will include monthly status reports and a final report with detailed process descriptions and material properties predictions supported by test demonstrations. DIRECT TO PHASE II - Offerors interested in submitting a Direct to PHASE II proposal in response to this topic must provide documentation to substantiate that the scientific and technical merit and feasibility described in the PHASE I section of this topic has been met and describes the potential commercial applications. Documentation should include all relevant information including, but not limited to: technical reports, test data, prototype designs/models, and performance goals/results. Read and follow Section 7.0 of the DARPA Instructions. PHASE II: Develop and demonstrate new methods and improvements to existing methods of creating thick C-C laminates in order to increase the mechanical properties and decrease the fabrication time. The bulk of the program and corresponding analysis requirements will involve the fabrication and testing of baseline material systems and the comparison to multiple experimental material systems that vary processing techniques, resins, processing schedules, and material. All of the variations will focus on accommodating the processing stresses by tailoring the properties of the material and distributing the loading. Fabricate and conduct analysis and testing to characterize, relevant large scale C-C assemblies, including components with varying thickness and shape to demonstrate the processing approach viability and the predicted material properties. Deliverables for this Phase will be monthly status reports as well as a final report. Demonstrate and employ innovative non-destructive methods for evaluation of Carbon-Carbon laminates and structures to characterize and assure the quality of the laminates and the subcomponent structures.

PHASE III: This technology is applicable to all branches of the DoD and Military. Key military applications may include, but are not limited to, hypersonic missiles, hypersonic ISR aircraft, or on-demand space access vehicle. This technology also has application in the commercial sector in the area of efficient commercial access to space.

US Flag An Official Website of the United States Government