You are here

Measurements of the Chemical Composition of Atmospheric Aerosols

Description:

Enhanced measurement methods are needed for the real-time characterization of the bulk and the size-resolved chemical composition of ambient aerosols, particularly carbonaceous aerosols. Such improved measurements would be used to facilitate the identification of the origin of aerosols, (i.e., primary versus secondary and fossil fuel versus biogenic). Also, improved measurements are needed to help elucidate how aerosol particles are processed in the atmosphere by chemical reactions and by clouds, and how their hygroscopic properties change as they age. This information is important because relatively little is known about organic and absorbing particles that are abundant in many locations in the atmosphere. In particular, there is a need for instruments capable of real-time measurements of the composition of these particles at the molecular level. Although recent advances have led to the development of new instruments, such as particle mass spectrometers and single particle analyzers, existing instruments still have important limitations in their ability to quantify black carbon vs. organic carbon, provide speciation of refractory and volatile organic compounds, and calibrate both organic and inorganic components. Furthermore, instruments that otherwise would be suitable for ground-based operation often have limitations (size, weight, power, stability, etc.) that restrict their application for in situ measurements, where critical atmospheric processes actually occur (e.g., in or near clouds using aircraft or balloons). In order to better understand the chemical composition of atmospheric aerosols, grant applications are sought to develop improved instruments, or entirely new measurement methods, that provide: (1) speciation of individual organics, including those containing oxygen, nitrogen, and sulfur; (2) identification of elemental carbon and other carbonaceous material, so that the makeup of the absorbing fraction is known; (3) identification of source markers, such as isotopic abundances in aerosols; and (4) the ability to probe the chemical composition of aerosol surfaces. In order to address the deficiencies associated with current techniques, proposed approaches should seek to provide: (1) quantifiable results over a wide range of compounds, which is a deficiency of laser ablation aerosol mass spectrometer methods; (2) measurements over a range of volatility so that dust, carbon, and salt are detectable, which is a deficiency of thermal decomposition aerosol mass spectrometers; and (3) measurements with high time resolution, which is a deficiency of filter techniques. Proposed approaches that can measure aerosol chemical composition from airborne platforms would be of particular interest
US Flag An Official Website of the United States Government