USA flag logo/image

An Official Website of the United States Government

Reconstruction of 3D DIC Microscopy Images

Award Information

Department of Health and Human Services
Award ID:
Program Year/Program:
2001 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Lickenbrock Technologies LLC
4041 Forest Park Ave. St. Louis, MO 63108-
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: Yes
Phase 2
Fiscal Year: 2001
Title: Reconstruction of 3D DIC Microscopy Images
Agency: HHS
Contract: N/A
Award Amount: $383,139.00


The overall project objective is to develop a commercial software product to improve the resolution and allow for quantitative analysis of specimens imaged using differential interference contrast (DIC) microscopy, by reconstructing a map of the optical path length distribution. This will essentially enable a DIC microscope to operate as a "virtual" transmitted light interference microscope. Phase 1 has shown the feasibility of reconstructing both 2D and 3D biological specimens. This resolution improvement will allow sub-cellular components of sizes that are near, or just below, the microscope diffraction limit to be resolved. Among other advantages, the optical path length information will enable the dry mass of a cell to be quantified, and for the reconstructed data to be used with standard 3D visualization methods or for automated cell analysis. The Phase 2 objectives are to refine the algorithm development to a commercial level, including; integration of the reconstruction and deconvolution algorithms, and improvements in robustness and speed. The accuracy of the optical path length information will be verified using test targets and biological specimens with known characteristics. Additional 2D and 3D biological specimens will be captured and processed to analyze performance and establish the required imaging protocol. PROPOSED COMMERCIAL APPLICATIONS: DIC microscopy is a widely used modality for observing live specimens, and the instrument will be enhanced by the quantitative results produced by the reconstruction software. DIC could now be quantitatively used when photo-toxic epi-fluorescence is undesirable. 3D specimens can now be captured in DIC and volume rendered. Changes in cell growth can be tracked, which will benefit genetic engineering. Increases in resolution will enable analysis of structures beyond the optical diffraction limit.

Principal Investigator:

David S. Biggs

Business Contact:

Small Business Information at Submission:

877 25TH ST WATERVLIET, NY 12189

EIN/Tax ID: 141772880
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No