USA flag logo/image

An Official Website of the United States Government

SBIR/STTR Phase II: Latent-Reactive Surface Modification Reagents for Biofilm…

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
57913
Program Year/Program:
2002 / SBIR
Agency Tracking Number:
0216532
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
SURMODICS, INC.
SURMODICS, INC. 9924 W 74TH ST EDEN PRAIRIE, MN 55344
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2002
Title: SBIR/STTR Phase II: Latent-Reactive Surface Modification Reagents for Biofilm Control
Agency: NSF
Contract: N/A
Award Amount: $0.00
 

Abstract:

This Small Business Innovation Research Phase II project continues the development of new thermally activable reagents for bonding microbicidal polymers to inner surfaces of a variety of opaque tubing materials, initiated in Phase I under the Advanced Materials and Manufacturing (AM) topic, Surface Engineering subtopic (F). Materials have been developed with bulk physical properties needed for transport of aqueous mixtures; however, the development of biofilm on the wet surfaces is a continuing serious problem in the dental, pharmaceutical, food processing, and marine transport industries. Surface modification of waterlines could decrease the formation of biofilm while retaining the desired bulk properties of the tubing. Photochemistry has been proven commercially successful in enhancing the surface properties of medical devices with radical-based surface modification initiated by RF plasma or ultraviolet light. However, these energy sources are not effective for modifying the inner surfaces of opaque tubes such as waterlines used with dental units and plumbing in pharmaceutical plants. This project is designed to develop latent-reactive radical generators activatible with thermal energy which penetrates these opaque devices. This innovative approach to scheduled activation of radical generators will provide a method to modify inert surfaces which cannot be activated with external light or plasma sources. Microbial colonization and biofilm formation remain a major cost and threat to human health and product quality for dental and pharmaceutical industries, health care and public lodging, and marine vessel utilization. Successful development of microbicidal and antifouling coating technology for the luminal surface of opaque transport and storage vessels for aqueous liquid ingestible products, constitute an incremental market size of tens of millions of dollars, not subject to current commercial coating technology.

Principal Investigator:

Patrick E. Guire
9528292743
pguire@surmodics.com

Business Contact:

Small Business Information at Submission:

SurModics, Inc.
9924 West 74th Street Eden Prairie, MN 55344

EIN/Tax ID:
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No