USA flag logo/image

An Official Website of the United States Government

Power Source Development for Compact Proton Accelerators

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
88996
Program Year/Program:
2010 / SBIR
Agency Tracking Number:
CA138010
Solicitation Year:
N/A
Solicitation Topic Code:
NCI
Solicitation Number:
N/A
Small Business Information
TPL, Inc.
3921 Academy Parkway North, NE Albuquerque, NM 87109-4416
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2010
Title: Power Source Development for Compact Proton Accelerators
Agency: HHS
Contract: 2R44CA138010-02
Award Amount: $1,469,812.00
 

Abstract:

DESCRIPTION (provided by applicant): Radiation therapy is one of the primary weapons in the battle against cancer, but even with the advances we have made, there remains significant room for improvement in radiation-based treatment technologies. Proton the rapy is now considered the most advanced form of radiation therapy available for cancer treatment, but the size and cost of currently available proton therapy devices have severely limited the technology's use and availability. The high voltage machines re quired to generate proton beams are massive-weighing several hundred tons and requiring 90,000 square feet to house. They also cost 100M or more to build. A substantial reduction in the size and cost is required for proton therapy machines to be rendered practical for use in typical cancer treatment centers. Ideally, a proton therapy machine would be miniaturized to the point that it would fit into a standard linac radiation vault and could replace existing photon machines. TPL Inc., in collaboration with Lawrence Livermore National Laboratory (LLNL), TomoTherapy Inc., Compact Particle Accelerator Corporation (CPAC) and UC Davis Cancer Center, has defined a technical approach that we believe will allow development of the first low-cost, compact proton-thera py machine. As envisioned, the new device will be an order of magnitude smaller and one-fifth the cost of the machines being used today. The key to developing this next-generation proton-therapy device is an extremely compact accelerator design based on a novel, high-voltage insulating material (dielectric) developed by TPL. This enabling material, developed initially for defense-related pulse-power applications, is a composite structure comprised of a formulated polymer resin and nano-size ceramic particle s. The Phase I program was successful in demonstrating feasibility for producing pulse power components that enable development of the envisioned compact proton therapy device. Manufacturability and performance characteristics of the accelerator building b locks were successfully demonstrated. Pulse forming lines were fabricated and tested by TPL Inc. and LLNL to system level specifications. All results support the proposed technical and economic feasibility of TPL's innovative approach to developing the nex t generation, compact and low cost proton therapy device. Proof of feasibility in the Phase I has set the stage for prototype development and demonstration by TPL and its collaborators. The proposed Phase II project will transition the demonstrated compone nt technology to the development, approval and manufacturing of system level components for Phase III commercialization. We anticipate that success in attaining our goals of substantially reducing cost and size of proton-therapy units will open up a very significant new marketplace in the U.S. and abroad for this type of cancer-treatment device. PUBLIC HEALTH RELEVANCE: Millions of Americans are lost every year to cancer, and although radiation therapy is one of our primary treatment tools for canc er, there remains significant room for improvement with even our best radiation based treatments. Proton therapy is considered the most advanced form of radiation therapy available for cancer treatment, but the size (hundreds of tons with a 90,000 square f oot footprint) and cost (more than 100 million to build) of currently available proton therapy devices have severely limited the technology's use. For this project, TPL is teaming with Lawrence Livermore, TomoTherapy Inc., Compact Particle Acceleration Co rporation and UC Davis Cancer Center to demonstrate the potential for using TPL's enabling technology to achieve an order of magnitude size reduction and an 80% cost reduction - with the entire effort focused on making next generation proton therapy practi cal for widespread use throughout the U.S. and internationally.

Principal Investigator:

Kirk M. Slenes
5053424437
KSLENES@TPLINC.COM

Business Contact:

Rod Kreutxian
tmosman@tplinc.com
Small Business Information at Submission:

TPL, INC.
TPL, INC. 3921 ACADEMY PKWY N NE ALBUQUERQUE, NM -

EIN/Tax ID: 185029154
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No