USA flag logo/image

An Official Website of the United States Government

Amphotericin B Analogs

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
93396
Program Year/Program:
2009 / SBIR
Agency Tracking Number:
AI082684
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
CENTROSE, LLC
802 Deming Way MADISON, WI 53717-
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2009
Title: Amphotericin B Analogs
Agency: HHS
Contract: 1R43AI082684-01
Award Amount: $277,253.00
 

Abstract:

DESCRIPTION (provided by applicant): Current antifungal therapy is limited by the types of drugs available to treat systemic infections due to emerging and comparatively rare fungi different from the common strains of pathogenic Candida, Aspergillus, Crypt ococcus and the Zygomycoses. Neutropenic and immunocompromised patients, such as those with hematologic cancer, AIDS or an organ transplant, are especially prone to invasive fungal infection. Amphotericin B (AMB) continues to be an important drug for invas ive aspergillosis, candidemia, mucormycosis, fusariosis and Cryptococcosis meningitis because of its potency, broad spectrum of activity and the low incidence of drug resistance associated with its use. Nonetheless, the well-known nephrotoxicity of AMB sev erely limits long term use of this polyene macrolide antibiotic. The toxicity is related to AMB's high lipophilicity, which causes it to localize in cell membranes, disrupting membrane integrity and causing leakage of ions. The structural alterations of AM B carried out to date have not resulted in an approved drug that retains the potency and activity spectrum of the parent drug while minimizing its nephrotoxicity and improving its water solubility for ease of formulation. Centrose proposes to use its Carbo ConnectTM technology for rapidly synthesizing libraries of small molecules with attached sugars of diverse structure to seek novel AMB analogs with lesser toxicity and greater water solubility, together with sufficient potency and spectrum of activity. Pre cedents among other types of small molecule drugs for improvement of their potency and pharmacokinetics (PK), or diminishment of their toxic liability, by sugar addition or modification provide additional support for our belief that attractive AMB analogs can be discovered in this way. Our rapid, empirical approach to drug lead discovery is sensible for a molecule in which the existing sugar is known to be vital for antifungal activity, yet for which the models of the mechanism of action are inadequate to d esign a structure-based rationale for systematic exploration and drug lead identification. Assays of library members for antifungal potency and spectrum of activity in vitro together with the results of an in vitro surrogate assay for potential nephrotoxic ity should allow identification of leads for in vivo testing. That will involve determining the acute nephrotoxicity, antifungal efficacy and PK characteristics in a rodent. The specific aims of Phase are: 1) to synthesize a 50 member library of sugar conj ugates representing a diverse array of mono- and disaccharides from the 19- oximino-OCH2CH2N(H)OCH3 derivative of AMB methyl ester aglycon; 2) to examine the feasibility of synthesizing a 40 member library of 3'-N-glycosyl derivatives of AMB methyl ester b y the Amidori rearrangement using novel monosaccharides; 3) to screen the resulting neoglycosides and 3'-N-sugar conjugates for antifungal activity in vitro (MIC values) against a panel of six important fungal pathogens; 4) to determine the IC50 for red bl ood cell hemolysis of the compounds with MIC's =5 micrograms/ml as a surrogate for in vivo nephrotoxicity; and 5) based on all of the results, to select up to 5 AMB analogs for determination of their acute nephrotoxicity, antifungal activity against two fu ngal pathogens and PK characteristics in a rodent. PUBLIC HEALTH RELEVANCE:The research aims to discover new forms of the broad spectrum antifungal drug, amphotericin B, with lesser toxicity and greater water solubility, together with sufficient potency an d spectrum of activity to be selected for development into an new antifungal drug.

Principal Investigator:

Charles R. Hutchinson
6082098933
CRHUTCH1943@CHARTER.NET

Business Contact:

James R. Prudent
hutchinson@centrosepharma.com
Small Business Information at Submission:

CENTROSE, LLC
CENTROSE, LLC 802 Deming Way MADISON, WI 53717

EIN/Tax ID: 205807443
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No