USA flag logo/image

An Official Website of the United States Government

Perovskite/Oxide Composites as Mixed Protonic/Electronic Conductors for…

Award Information

Agency:
Department of Energy
Branch:
N/A
Award ID:
61548
Program Year/Program:
2003 / SBIR
Agency Tracking Number:
70103S02-II
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Technology Holding, LLC
350 W 800 N Suite 250 Salt Lake City, UT 84103-1441
View profile »
Woman-Owned: Yes
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2003
Title: Perovskite/Oxide Composites as Mixed Protonic/Electronic Conductors for Hydrogen Recovery in IGCC Systems
Agency: DOE
Contract: DE-FG02-03ER83828
Award Amount: $0.00
 

Abstract:

70103 Integrated Gasification Combined Cycle (IGCC) systems are promising new alternatives for highly efficient and environmentally friendly power generation. In order to make these systems commercially viable, a portion of the hydrogen in syngas needs to be recovered as a value-added byproduct through the use of hydrogen separation membranes such as proton-conducting membranes. Since current membrane technologies for hydrogen separation are incompatible with the high-temperature, high-pressure environment in IGCC systems, robust and efficient membrane systems are required. This project will develop a novel, dense, ceramic-composite membrane that will function as a mixed protonic/electronic conductor under expected IGCC operating conditions. These mixed-conducting composite membranes will allow pressure-driven hydrogen separation at 800-900¿C, and at higher flux-rates than possible with single phase membranes, thus resulting in a very-high-purity hydrogen stream. In Phase I, the feasibility of the process for forming mixed conducting protonic/electronic conductors was demonstrated. It was determined that a flux of over 9 cc/cm2/min through a 15 cm membrane can be achieved. Additionally, it was demonstrated that the new materials have increased thermochemcial stability in CO2-containing atmospheres, compared to materials in conventional proton conductors. In Phase II, a single-wafer module will be built and tested to demonstrate the hydrogen flux necessary for commercial feasibility. Commercial Applications and Other Benefits as described by awardee: The hydrogen separation membrane should have a major impact on the commercial feasibility of IGCC systems and other industrial hydrogen recovery/separation processes. Further, this membrane should be applicable to such emerging technologies as intermediate-temperature fuel cells based on proton-conducting electrolytes.

Principal Investigator:

S. Elangovan
8019782162
elango@cermatec.com

Business Contact:

Raymond K. Miller
8019782114
rkm@ceramatec.com
Small Business Information at Submission:

Ceramatec, Inc.
2425 South 900 West Salt Lake City, UT 84119

EIN/Tax ID: 870322278
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No