USA flag logo/image

An Official Website of the United States Government

Virus-like particle vaccines against respiratory syncytial virus

Award Information

Department of Health and Human Services
Award ID:
Program Year/Program:
2010 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2010
Title: Virus-like particle vaccines against respiratory syncytial virus
Agency: HHS
Contract: 1R43AI091230-01
Award Amount: $599,998.00


DESCRIPTION (provided by applicant): Our long term goal is to develop a safe, effective vaccine to prevent respiratory syncytial virus (RSV) disease. RSV is the leading cause of bronchiolitis, viral pneumonia, respiratory failure, and mechanical ventilatio n in infants. It causes gt120,000 infant hospitalizations per year in the USA and is the leading cause of infant viral death. In the elderly, RSV causes one third of pneumonia hospitalizations. In children and adults, RSV infection is a major cause of acut e asthma exacerbations. There is no licensed vaccine. Experimental RSV vaccines including inactivated, live attenuated, subunit, viral-vectored, and DNA have been developed and tested in animal models and small clinical trials. However, these have been lar gely unsuccessful. Inactivated and subunit vaccines have a history of causing immunopathology. Live attenuated RSV vaccines are safe. However, attenuated RSVs characteristically induce transient/poor immunity like wild-type RSV. We are developing novel virus-like particle (VLP) RSV vaccines. VLPs are genetically engineered complexes of proteins in a particulate virus-like structure that lacks viral genetic material and therefore cannot replicate. Viral proteins presented as VLPs are highly immunogenic an d induce protective humoral, cellular, and mucosal immune responses. We have extensive experience expressing viral proteins on VLPs and evaluating VLP-induced immunity. The RSV fusion (F) and attachment glycoprotein (G) contain all known neutralizing antib ody epitopes and several T cell epitopes. We hypothesize that VLPs expressing RSV F, G, or both F and G surface will induce strong RSV-specific immune responses and immunity. In Aim 1, we will generate VLPs using a recombinant baculovirus system to expr ess VLP proteins in insect cells and gradient ultracentrifugation to purify VLPs. We have experience with these methods which are FDA approved for human use and scalable for production. We will generate RSV-G, RSV-F, and RSV-GF VLPs by co-expressing these proteins with influenza matrix M1 protein as the VLP core. VLPs co-expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) proteins exhibit enhanced cellular and humoral responses. We will generate RSV VLPs with and without anchored GM-CSF. Al so, we will optimize immunogenicity by testing three different co-administered adjuvants, aluminum hydroxide (alum), CpG oligodeoxynucleotides (CpG ODN), and monophosphoryl lipid (MPL). The latter two adjuvants stimulate toll- like receptor signaling pathw ays known to be important for anti-RSV responses. In Aim 2, we will define the immunogenicity and efficacy of these RSV VLP vaccines in a mouse model. Mice will be primed and boosted with VLPs intranasally. RSV-specific antibody (IgG and IgA) and T cell re sponses will be quantified after immunization. To determine protection, we will challenge mice with a recombinant, chimeric RSV strain known to give higher lung viral loads than laboratory RSV strain in BALB/c mice. Collectively, these experiments will adv ance RSV VLP vaccine development and may lead to a much needed approved RSV vaccine. PUBLIC HEALTH RELEVANCE: Respiratory syncytial virus (RSV) causes apprimately 120,000 infant hospitalizations in the US each year and is the leading cause of bronchiol itis and viral death in infants. Despite decades of research with traditional vaccine approaches, there are no approved RSV vaccines. We are advancing virus-like particle (VLP) vaccines for RSV, and we predict RSV VLPs will be effective and safe vaccines t hat prevent RSV disease.

Principal Investigator:

Fushi Quan

Business Contact:

Jadranka Boxja
Small Business Information at Submission:


EIN/Tax ID: 120821936
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No