USA flag logo/image

An Official Website of the United States Government

Advanced Visualization and Support Environment (ADVISE)

Award Information

Agency:
Department of Defense
Branch:
Air Force
Award ID:
92733
Program Year/Program:
2009 / SBIR
Agency Tracking Number:
F083-024-0247
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Charles River Analytics Inc.
625 Mount Auburn Street Cambridge, MA 02138-4555
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2009
Title: Advanced Visualization and Support Environment (ADVISE)
Agency / Branch: DOD / USAF
Contract: FA8650-09-M-6983
Award Amount: $99,920.00
 

Abstract:

An operator within the JSpOC faces a continuous and rapid flow of intelligence from disparate and distributed sensors, theatre participants, and other operators, all of which may or may not accurately reflect the current operational situation. Despite having technology that fuses these heterogeneous data sources, this abundance of information does not guarantee mission success or even improved SSA; rather it can overload JSpOC operators, resulting in confusion, poor analysis, and ineffective decision-making. To improve the accuracy, efficiency, and usefulness of these fusion algorithms employed within the JSpOC, we present our proposed effort to design and demonstrate a Framework Leveraging Operator Reasoning in Data Association and Filtering Algorithms (FLORIDA) to support improved SSA. First, we will perform a systematic evaluation of the JSpOC work domain to understand operator reasoning and decision-making requirements. Second, we will establish a meta-information ontology facilitating the augmentation of existing and future fusion algorithms with qualitative metrics. Third, we will select and augment several computation techniques currently employed within fusion algorithms. Fourth, we will design preliminary controls and visualizations that facilitate operator interaction with the FLORIDA-enhanced multi-source data fusion algorithms. Finally, we will develop and evaluate a demonstration prototype incorporating the above elements. BENEFIT: We see considerable promise in the commercial application of rapidly prototyped information and meta-information display and control techniques, specifically in the financial industry, where investment decision-making is fraught with uncertainty, and risk management is critical to investment strategy. We also see applications in commercial space asset management environments, where data quality and data recency are critical to asset protection. We also plan to transition the information and meta-information interface techniques developed with FLORIDA into the next version of our BNetr Bayesian belief network application.

Principal Investigator:

Scott Potter, PhD
Principal Scientist
6174913474
spotter@cra.com

Business Contact:

Gail Zaslow
Contract Specialist
6174913474
gzaslow@cra.com
Small Business Information at Submission:

CHARLES RIVER ANALYTICS, INC.
625 Mount Auburn Street Cambridge, MA 02138

EIN/Tax ID: 042803764
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No