USA flag logo/image

An Official Website of the United States Government

Computational Methods for Feedback Flow Controllers in Aerodynamic Applications

Award Information

Agency:
Department of Defense
Branch:
Air Force
Award ID:
62654
Program Year/Program:
2003 / STTR
Agency Tracking Number:
F033-0051
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Clear Science Corp.
PO Box 233 663 Owego Hill Road Harford, NY -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2003
Title: Computational Methods for Feedback Flow Controllers in Aerodynamic Applications
Agency / Branch: DOD / USAF
Contract: F49620-03-C-0092
Award Amount: $99,996.00
 

Abstract:

Clear Science Corp. and the University of California at Los Angeles propose to develop a versatile and comprehensive computational toolbox for designing feedback flow controllers in aerodynamic applications. Target objectives include separation control tomanage lift and form drag, control of transition to turbulence, turbulence control to reduce skin friction drag, increase mixing, or reduce heat transfer, and control of acoustical output (noise suppression). The toolbox will be modular withinterchangeable reduced-order modeling algorithms, system state estimators, and controller designs. We will leverage our team''s work in low-dimensional modeling, balanced order reduction, stochastic estimators, standard controllers for linear systems,and advanced modeling for nonlinear systems. Phase I objectives include demonstrating a prototype of the computational toolbox. The proof-of-concept prototype will target several feedback flow control applications involving different computationaldomains, flow conditions, and control input-output. Reduced-order models, estimators, and controllers will be designed for each application. A second objective is formulation of a Phase II development and test plan. The Phase II plan will includedevelopment of libraries of reduced-order models, estimators, and controllers for feedback flow control. Tests will consist of CFD, controller-in-the-loop simulations to demonstrate modeling and estimation accuracy, controller robustness, and interfacingbetween the computational toolbox and third-party software. The commercial product to be developed is a validated computational toolbox for designing feedback flow controllers in aerospace and industrial applications. The corresponding market includesdesigners of aerospace, automotive, and industrial systems for which flow control is critical. Potential applications of the software include control system designs for low-drag wings on commercial aircraft, low-drag bodies in high-performance automobiles,high-lift blades in rotorcraft, low-distortion jet engine inlets, and high-mixing combustors. Interfaces between the feedback flow control toolbox, commercial CFD codes, and software like Matlab will provide the conduit for commercialization, enablingengineers to incorporate flow control into the overall design process, perform control-in-the-loop simulations, and utilize standard controller designs.

Principal Investigator:

Henry A. Carlson
President
6078449171
hcarlson@htva.net

Business Contact:

Henry A. Carlson
President
6078449171
hcarlson@htva.net
Small Business Information at Submission:

Clear Science Corp.
PO Box 233, 663 Owego Hill Road Harford, NY 13784

EIN/Tax ID: 161603092
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Research Institution Information:
UNIV. CALIFORNIA, LOS ANGELES
10920 Wilshire Blvd., Suite 1200
Los Angeles, CA 90024
Contact: Jeanne De Pass
Contact Phone: (310) 794-0135
RI Type: Nonprofit college or university