USA flag logo/image

An Official Website of the United States Government

SBIR Phase I:Automatic, User-Programmable Variable Volume Mixing for…

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
99057
Program Year/Program:
2010 / SBIR
Agency Tracking Number:
1013625
Solicitation Year:
N/A
Solicitation Topic Code:
BT8
Solicitation Number:
N/A
Small Business Information
MICROFLUIDIC INNOVATIONS, LLC
1281 Win Hentschel Blvd. WEST LAFAYETTE, IN 47906
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2010
Title: SBIR Phase I:Automatic, User-Programmable Variable Volume Mixing for General-Purpose Programmable Lab on a Chip
Agency: NSF
Contract: 1013625
Award Amount: $174,430.00
 

Abstract:

This Small Business Innovation Research (SBIR) Phase I project addresses the challenge of achieving variable volume fluid mixing at the microfluidic scale in the context of general-purpose programmable lab-on-a-chip devices (GPLoCs). Directly supporting variable volume mixing is fundamental to GPLoCs because GPLoCs may be programmed to perform multiple assays, where each assay may require arbitrary mix ratios. While fixed-volume fluid manipulation is well-studied in the literature, variable-volume fluid manipulation is not well understood. To enable variable volume manipulation, this project identifies and targets four key objectives: (a) inter-slug air gap elimination, (b) homogeneous mixing, (c) variable volume purging, and (d) support for extreme mix ratios. Further, one of the key goals of this project is to automate the entire process of variable volume mixing. The proposed research targets all the above objectives with innovations in hardware (novel mechanisms for fluid transport, metering, and purging) and software (software sequencing for extreme ratio mixing). The broader impact/commercial potential of this project derives from the fact that successful variable volume manipulation directly enables GPLoCs, which have the potential to have far-reaching scientific, commercial and societal impact. GPLoCs enable faster experimentation and assay development, which can have significant scientific impact in the fields of proteomics, genomics, immunology, drug discovery, and biochemistry. Further, because GPLoCs can reduce the time-to-market for new assays, it has the potential to attract commercial assay vendors to the GPLoC platform, enhancing its commercial potential. On the societal front, GPLoCs could dramatically lower the costs of home diagnostic labs. Moreover, the automation inherent in GPLoCs would make GPLoCs more easily used by non-technicians (i.e., by home users). The combination of enhanced usability and lower costs has the potential to broaden access to sophisticated assays at home.

Principal Investigator:

Ahmed Amin
PhD
7654093124
ahmed@microfluidicinnovations.com

Business Contact:

Ahmed Amin
PhD
7654093124
ahmed@microfluidicinnovations.com
Small Business Information at Submission:

Microfluidic Innovations
1281 Win Hentschel Blvd West Lafayette, IN 47906

EIN/Tax ID: 264834246
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No