USA flag logo/image

An Official Website of the United States Government

Advanced Laser Technology for Fractional Skin Resurfacing and Other Surgical…

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
96090
Program Year/Program:
2010 / SBIR
Agency Tracking Number:
EB009955
Solicitation Year:
N/A
Solicitation Topic Code:
NIBIB
Solicitation Number:
N/A
Small Business Information
INFRALASE, INC.
6620 GULTON CT NE ALBUQUERQUE, NM 87109
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2010
Title: Advanced Laser Technology for Fractional Skin Resurfacing and Other Surgical Appl
Agency: HHS
Contract: 1R43EB009955-01A1
Award Amount: $123,591.00
 

Abstract:

DESCRIPTION (provided by applicant): The long-term goal of this project is to create an efficient, unique, and versatile laser instrument that will have applications in a large range of surgical procedures including dermatology, laryngology, otology, and o phthalmology. In the near-term, these instruments will act as efficient replacements for Er:YAG and Er:YSGG lasers used in several dermatological applications. The two major specific aims for Phase I are: (1) Demonstration of a compact fiber laser instrume nt emitting at an ideal wavelength and with continuously adjustable pulse duration and highly controlled repetition rates for precision micro- fractional skin resurfacing applications. The research design and methods for this aim include: o Construction of a compact and efficient laser-diode-pumped an Er:ZBLAN (2.8 5m) fiber laser with continuously variable pulse durations (10 5s - 100 ms) o Demonstration of appropriately high pulse energies from an ultracompact high efficiency laser system (gt10 mJ pul se energies in 100 5s pulses, and up to 500 mJ pulse energies for 100 ms pulses) o Demonstration of a beam quality that can be focused to controlled micro-spot sizes with dimensions between 10 5m and 100 5m (2) Performance of skin resurfacing studies at the Beckman Laser Institute (Univ. of Calif., Irvine) using the above-described instrument, to simulate the effects that are observed with an Er:YAG laser, and operating over a broad range of pulse durations, pulse burst sequences and pulse repetition ra tes with a goal of uncovering novel clinically-beneficial operating regimes. The research design and methods for this aim include: . Demonstration of ex-vivo skin ablation under a broad range of laser parameters o Use of histology to quantify ablation and thermal damage to determine equivalency with FDA approved Er:YAG. Investigation of the effect of fluence, pulse length and multiple pulse irradiations. In Phase II, we will: (1) Develop scanning system and improve beam delivery. (2) Develop an adva nced prototype of our fiber laser instrument. (3) Conduct in vivo and clinical studies and demonstrate clinically superior skin resurfacing effects. PUBLIC HEALTH RELEVANCE: The primary relevance of this research is that it will lead in the long ter m to efficient, unique, and versatile laser surgical instruments that will have applications in a large range of surgical procedures including dermatology, laryngology, otology, and ophthalmology. In the near-term, these laser surgical instruments will act as efficient replacements for Er:YAG and Er:YSGG lasers used for several dermatological applications. A key advantage is that the proposed instrument will enable more effective and lower cost procedures, and enable quicker healing from the surgery.

Principal Investigator:

Ravinder Jain

Business Contact:

Neena Jain
neena@infralase.com
Small Business Information at Submission:

INFRALASE, INC.
INFRALASE, INC. 6620 GULTON CT NE ALBUQUERQUE, NM 87109

EIN/Tax ID: 185048331
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No