USA flag logo/image

An Official Website of the United States Government

A Platform for Standardized Comparisons of Repair Protocols for the Craniofacial

Award Information

Department of Health and Human Services
Award ID:
Program Year/Program:
2009 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
CyberConnect EZ, LLC
37 Max Felix Dr. Storrs, CT -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2009
Title: A Platform for Standardized Comparisons of Repair Protocols for the Craniofacial
Agency: HHS
Contract: 1R43DE019601-01
Award Amount: $182,579.00


DESCRIPTION (provided by applicant): Tissue engineering currently has little discipline in assessing the efficacy of biomaterials through in vivo experiments. This lack of discipline poses a serious challenge to the community as it will soon be inundated w ith scaffold biomaterials and alternative progenitor and stem cells. The community needs to establish a systematic way of evaluating which combination of scaffolds and progenitor/stem cells may result in most desirable wound repair. Three requirements for establishing such systematic evaluation platform are: (i) the capability to visualize the physiological changes occurring within the wound repair region, (ii) the capability to translate the visualized changes into objectively quantifiable measures, and (i ii) the capability to deliver the analysis outcome in a matter that is user friendly and amenable to analysis provenance for the investigators. This proposal is a joint endeavor that combines the unique in vivo expertise available at the University of Conn ecticut Health Center and the advanced image processing and software engineering capability of CyberConnect. We propose a three-step approach that tests the feasibility of establishing a scaffold evaluation enterprise. First, we develop an in vivo standard ized model for evaluation which using GFP reporters and cell specific enzymatic stains that can explain why one scaffold/cell combination is better than another. Second, we develop image analysis methods that can automatically quantify marker distributions to substantiate observable cellular events over the varying timeline. We also develop the needed LIMS and the associated database necessary to deposit images, analysis outcomes and the reports. Third, we beta test our strategy with two outside investigato rs who submit scaffold samples and benchmark our proposed operation to develop the optimal service model plan. The potential impact of our proposed work could be enormous. As the regenerative medicine market is expected to skyrocket in the coming years, a majority of biomaterial companies and stem cell companies will need to evaluate cell/scaffold combinations. Furthermore our evaluation technique could impact the FDA, as the current lack of regulatory standards for a cell based therapy is due to the diffic ulty of reliably scoring differentiation status of the donor cells and the response of the host cells to the intervention. Our proposed scaffold evaluation truly represents an untapped market. PUBLIC HEALTH RELEVANCE: Our proposed framework could f undamentally change the way scientists develop cell therapy techniques in the future. Specifically, using the developed methodology the FDA could institute a new pre-clinical data collection policy which can assure safer, faster and more efficient cell the rapies. The tissue engineering educational community can also greatly benefit from our research, as our effort can produce a standardized way of comparing scaffolds for their uses in wound repair protocols. As for the specific impact on the science, our pr oposed framework could produce a gold standard for evaluating the efficacy of scaffolds through in vivo experiments.

Principal Investigator:

Jeffrey Maddox

Business Contact:

Eunice Lee
Small Business Information at Submission:


EIN/Tax ID: 061460939
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No