USA flag logo/image

An Official Website of the United States Government

SBIR Phase I: High Density Optical Data Storage Based on Photonic Band Gap…

Award Information

National Science Foundation
Award ID:
Program Year/Program:
2003 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
EM Photonics, Incorporated
51 East Main Street Suite 203 Newark, DE 19711-
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2003
Title: SBIR Phase I: High Density Optical Data Storage Based on Photonic Band Gap Technology
Agency: NSF
Contract: 0317285
Award Amount: $99,814.00


This Small Business Innovation Research (SBIR) Phase 1 project addresses the market need for advances in commercial optical data storage technology. The demand for increased data capacity, higher performance, and the commercial success of products such as digital versatile disks (DVDs) is ever increasing. Despite improvements in recording media, laser sources, and electro-mechanical design, ultimately the data density is limited by the minimum spot size that can be produced for recording and reading. Recently, it has been demonstrated that near-field optical systems, which produce optical features below the diffraction limit, have the potential to significantly increase data storage capacity. Researchers have investigated a variety of near-field methods including tapered fibers, solid immersion lenses, and mode index waveguide lenses. Based on advances in semiconductor processing techniques, a new class of optical devices based on submicron periodic structures has emerged and is referred to photonic band gap (PBG) devices. Preliminary research indicates that these devices will be capable of performing a wide variety of optical functions including switching, modulation, and filtering. PBGs can be integrated into small packages making them desirable for applications such as optical interconnects and wavelength division multiplexing, sensors, and engineered coatings. Our preliminary studies indicate that waveguides based on PBG structures may be useful in near-field optical data storage systems.

Principal Investigator:

Gregory Behrmann

Business Contact:

Small Business Information at Submission:

EM Photonics, Inc.
102 E. Main Street Newark, DE 19711

Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No