USA flag logo/image

An Official Website of the United States Government

Active Pixel HgCdTe Detectors With Built-in Dark Current Reduction for…

Award Information

Agency:
National Aeronautics and Space Administration
Branch:
N/A
Award ID:
76650
Program Year/Program:
2006 / SBIR
Agency Tracking Number:
040299
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
EPIR Technologies Inc
590 Territorial Drive, Suite B Bolingbrook, IL -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2006
Title: Active Pixel HgCdTe Detectors With Built-in Dark Current Reduction for Near-Room Temperature Operation
Agency: NASA
Contract: NNL06AA12C
Award Amount: $599,767.00
 

Abstract:

High sensitivity HgCdTe infrared arrays operating at 77K can now be tailored in a wide range of wavelengths from 1 to 14 microns. However, due to the cooling requirements, they consume large amounts of power and are bulky and unsuitable for many NASA applications. During Phase I, we demonstrated the feasibility of employing dark current skimming to increase the operating temperature of HgCdTe mid-wavelength infrared devices to temperature regimes attainable by thermoelectric (TE) cooling. This work will be applied to two-color detectors and 320 ? 256 focal plane arrays during the proposed Phase II effort, leading to the next generation of HgCdTe infrared focal plane arrays. Multicolor detection will involve only an incremental development of the current skimming employed in Phase I. The resistor used in Phase I for skimming will be replaced with a photovoltaic detector that will have two functions: first, it will allow skimming by collecting part of the current flowing through the main detectors, and second, it will act as an independent detector for a second color. By employing a non-equilibrium mode of operation for the same detector, the majority and minority carrier densities will be greatly reduced. This will suppress Auger recombination processes in the active layers, and lead to dramatic increases in recombination lifetimes, dynamic impedances and detectivities. The proposed effort will exploit the excellent optoelectronic properties of bandgap tunable HgCdTe, the rec

Principal Investigator:

Silviu Velicu
Principal Investigator
6307710201
svelicu@epir.com

Business Contact:

Sivalingam Sivananthan
President
6307710206
siva@epir.com
Small Business Information at Submission:

EPIR Technologies
590 Territorial Dr. Bolingbrook, IL 60440

EIN/Tax ID: 364196918
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No