USA flag logo/image

An Official Website of the United States Government

Dielectric Nanocomposite Films with Increased Energy Storage for Pulsed Power…

Award Information

Department of Defense
Air Force
Award ID:
Program Year/Program:
2009 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Luna Innovations Incorporated
1 Riverside Circle Suite 400 Roanoke, VA 24016-4962
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2009
Title: Dielectric Nanocomposite Films with Increased Energy Storage for Pulsed Power Capacitors
Agency / Branch: DOD / USAF
Contract: FA8650-09-M-5032
Award Amount: $99,995.00


With the increasing requirements for compact, lightweight, high power storage systems, the development of new high energy density dielectric materials is important. Dielectric nanocomposites are hybrid systems that offer the potential to meet the next energy storage requirements by combining the high k performance of ceramics with the high breakdown strength and low loss of polymers. Currently dielectric nanocomposites are prepared by combining high k nanoparticles into polymer matrices. To achieve a high dielectric constant, high filler volumes (>50%) are needed. As the loading increases, the film quality, mechanical properties, thermal stress reliability, and dielectric breakdown strength have all been shown to degrade. To overcome these problems, Luna proposes to develop a dielectric polymer nanocomposite system based on unique functionalized nanomaterials that are well dispersed in a polymer matrix. The goal of the program is to prepare a dielectric nanocomposite containing a low percentage of nanofillers that demonstrates good electrical performance. In the Phase I program, Luna will evaluate several nanofiller materials and their dispersion with appropriate polymer systems. Once suitable polymer/nanofiller combinations are identified, nanocomposite fabrication methods will be developed. Finally, the electrical properties will be demonstrated. BENEFIT: The materials developed in this Phase I program would find use as capacitor components for pulsed power applications. Pulsed power capacitors with improved electrical performance would have use in power systems for directed energy weapons. In addition, the proposed technology would find application in military markets that demand large pulsed power capacitor banks, such as integrated power units on unmanned air vehicles (UAVs), military shelter power applications, and electromagnetic rail launchers. In both military and commercial markets these materials could find application in small portable power platforms for laptops, hybrid vehicles or other back-up power generation needs.

Principal Investigator:

Christy Vestal
Principal Investigator

Business Contact:

Laura Rasnick
Contracts Administrator
Small Business Information at Submission:

1 Riverside Circle Suite 400 Roanoke, VA 24016

EIN/Tax ID: 541560050
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No