USA flag logo/image

An Official Website of the United States Government

Faradayic ElectroEtching of Stainless Steel Bipolar Plates

Award Information

Department of Energy
Award ID:
Program Year/Program:
2009 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Faraday TechNology, Inc.
315 Huls Drive Clayton, OH 45315-8983
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 2
Fiscal Year: 2009
Title: Faradayic ElectroEtching of Stainless Steel Bipolar Plates
Agency: DOE
Contract: DE-FG02-08ER85112
Award Amount: $750,000.00


Commercialization of polymer-electrolyte-membrane fuel cells requires low-cost components, materials, and manufacturing processes. However, current bipolar plate manufacturing methods are slow, expensive, and are inappropriate for some advanced flow-field designs. This project will develop an innovative electro-etching process that will enable through-mask etching of stainless steel bipolar plates at high volume and low cost. This technique will enable advanced flow channel designs, not easily attainable using current manufacturing technologies. In Phase I, an advanced electrochemical cell, which facilitates uniform flow across the entire surface of the test plates, was designed and modified to electro-etch a 2¿ x 2¿ serpentine flow field into 4¿ x 4¿ 304 and 440C stainless steel substrates. A preliminary economic analysis demonstrated that the innovative electro-etching process can meet the high volume cost target of ~$1.50 per bipolar plate. Phase II will (1) validate the development, optimization, and manufacturing of the electro-etching process for both gas and coolant flow field channels; (2) select appropriate tests to characterize the functionality, durability, and performance of the metal bipolar plates for single and short-stack fuel cells; and (3) conduct a more comprehensive economic assessment of the electro-etching process as it relates to bipolar plate manufacturing. Commercial Applications and other Benefits as described by the awardee: An electrochemical etching processes for passive materials such as stainless steels, titanium, and nickel-based alloys should have wide applications in a variety of industries, including aerospace, medical, and automotive. With respect to the manufacturing of fuel cells, the proposed process for bipolar plates should facilitate the viability of polymer-electrolyte-membrane fuel cells as a power source, reducing pollution and increasing manufacturing job opportunities in the U.S

Principal Investigator:

Heather McCrabb

Business Contact:

Jennings Taylor
Small Business Information at Submission:

Faraday Technology, Inc.
315 Huls Drive Clayton, OH 45315

EIN/Tax ID: 311347918
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No