USA flag logo/image

An Official Website of the United States Government

Ultra-low-power analog seizure detection algorithm

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
89427
Program Year/Program:
2008 / SBIR
Agency Tracking Number:
NS063488
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
FLINT HILLS SCIENTIFIC, LLC
5040 BOB BILLINGS PARKWAY, SUITE A LAWRENCE, KS 66049
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2008
Title: Ultra-low-power analog seizure detection algorithm
Agency: HHS
Contract: 1R43NS063488-01
Award Amount: $99,831.00
 

Abstract:

DESCRIPTION (provided by applicant): Development of implantable devices for automated detection, quantification, warning and delivery of therapy to block seizures is a very important unmet medical need. Making such a device as small as possible, minimizin g replacement surgeries, and maximizing device longevity and/or time between battery recharging are some of the most important development drivers in a patient-centric design and are closely related to commercial viability of the device product. While th e benefits of endowing such devices with intelligence (i.e., early warning capabilities and means for objectively quantifying seizures with high accuracy) is clear, the severe power consumption and processor speed limitations associated with the digital mi croprocessors used in today's implantable devices are a significant hurdle in implementing even the most efficient digital algorithms. Development of analog algorithms for use in existing and future devices provides a viable and effective way to overcome t his hurdle. The focus of this proposal is on validating an ultra-low-power analog seizure detection algorithm (ASDA), which is the world's first to be implemented, completely in analog. In a small-scale preliminary study, the ASDA's performance was equival ent to that of an existing, rigorously and successfully validated, state-of-the-art digital detection algorithm. Moreover, it is estimated that the ASDA can achieve this level of performance while consuming 25-50 times less power. The ASDA's performance wi ll be evaluated on a previously collected and visually scored multicenter database of brain signals from 130 subjects containing several thousand seizures. A detailed comparison of results will be made with the digital Osorio-Frei SDA. The existing breadbo ard analog implementation will also be ported to a printed circuit board version. The resulting analog seizure detection system is expected to markedly increase longevity and commercial viability of implanted devices for real- time detection, warning, and seizure blockage, while retaining superior accuracy. PUBLIC HEALTH RELEVANCE: The focus of this Phase I SBIR proposal will be on validating the use of a novel signal processing technology to enable full implementation and eventual commercialization of the world's first ultra-low power completely analog seizure detection algorithm. The validation will compare the new, ultra-low-power approach with an already rigorously and successfully validated, state-of-the-art digital seizure detection algorithm. The ana log algorithm's performance will be evaluated on a previously collected and visually scored database of brain signals from 130 subjects containing several thousand seizures. Device power consumption, compared to that using a conventional digital implementa tion, is expected to be decreased by a factor of approximately 25-50. The resulting analog seizure detection algorithm is expected to markedly increase longevity and commercial viability of implanted devices for real-time seizure detection, warning, and bl ockage.

Principal Investigator:

Business Contact:


frei@fhs.lawrence.ks.us
Small Business Information at Submission:

FLINT HILLS SCIENTIFIC, LLC
5040 BOB BILLINGS PARKWAY, SUITE A LAWRENCE, KS 66049

EIN/Tax ID: 481171337
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No