USA flag logo/image

An Official Website of the United States Government

A Low Cost Microarray for Population-Scale AIDS Risk Analysis: The AIDS Chip

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
93393
Program Year/Program:
2009 / SBIR
Agency Tracking Number:
AI081614
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
GENOMICS USA, INC.
3450 S. Broadmont TUCSON, AZ 85710-
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2009
Title: A Low Cost Microarray for Population-Scale AIDS Risk Analysis: The AIDS Chip
Agency: HHS
Contract: 1R43AI081614-01A2
Award Amount: $599,686.00
 

Abstract:

DESCRIPTION (provided by applicant): There is rapidly growing HIV literature, which has discovered a set of inherited genetic differences which can predict: a) the fraction of an infected population who will progress slowly, or never progress to AIDS sympt oms (the so-called Elite Controllers), or b) the fraction of an infected population who will develop a dose limiting, Stevens-Johnson like inflammatory response to abacavir, and consequently, cannot be given that first-tier AIDS antiretroviral. The literat ure suggests that both of those effects are centered upon personalized variation within the HLA-B locus. Indeed, many now view the role of HLA-B in abacavir hypersensitivity and Elite Controller resistance to AIDS to be the gold standard for the entire f ield of personalized medicine. Based on this rapidly expanding role for HLA-B in personalized medicine, for AIDS and for conditions such as Stevens-Johnson syndrome and reactive arthritis (plus many others that are more speculative at present), we argue th at the time is right to develop a simple, low-cost, one-pot genetic test which can be used for the analysis of all AIDS-relevant genetic variation in HLA-B, with a future eye to extending such HLA-B testing to encompass new indications in personalized medi cine, as well. In this SBIR, we will use a novel microarray technology that we have invented to develop a specialized, very low cost microarray test, referred to as the AIDS-Chip, which will perform very-high-resolution HLA-B testing as a single, simple, inexpensive, compact microarray test. This test will measure genetic factors of AIDS progression and therapeutic response embodied within the HLA-B locus in a way that can be expanded, later, into a more broadly-applicable HLA-B-based test for disease ris k and pharmaceutical response in areas of medicine that might extend far beyond the AIDS focus of this SBIR. A key component of our AIDS-Chip is that it can be made highly redundant. It can encompass auxiliary genes such as KIR and CCR5, and importantly, c an be coupled to high throughput, dry state sample collection on Guthrie cards in a way that, in Phase II, will be naturally suited for development of the AIDS-Chip as a low cost, ASHI-validated laboratory process and, with the FDA, as a 510K approved IVD. PUBLIC HEALTH RELEVANCE: For at least twenty years, a basic understanding of the immune system would have required that personalized variation in the HLA gene cluster, especially Type I HLA genes, must give rise to some sort of personalized variation in t he response to infection. However, the tools of the day were not sufficient to discover such (predicted) correlations in enough detail to be useful, nor to deploy that information in the field, as a public health test. However, based upon recent advancemen ts in the tools of applied genetics, and driven by the severity of the disease, such explicit HLA correlations have emerged for AIDS and have been the basis for major excitement in the field. Thus, as had been predicted for many years, we are now entering an era where the methods of genetic testing can be applied, at the population scale, for HLA-based disease risk analysis. We argue that HIV-AIDS will be viewed as only the first of many such diseases, where heritable HLA variation can help predict life-lon g variation in disease risk. The technology to be developed in this SBIR will help deliver those newly discovered HLA-AIDS correlations, as a low-cost, population based genetic test. However, perhaps more importantly, a technology platform such as that whi ch we will develop (a complex genetic test + dry state sample collection) will be viewed historically as a model for the way that population scale genetics will be used for all diseases in the decades to come. There is no doubt that, ten years from now, ne w technologies will emerge that are better, faster and cheaper than the AIDS-Chip that we will develop here. However, we are equally certain that, whatever those new population scale genetic tools may be, the way that they are used, will look very much lik e the Guthrie Card + AIDS-Chip pairing of this SBIR.

Principal Investigator:

Michael E. Hogan
5209041715

Business Contact:

Krishna Jayaraman
kjayaraman3@comcast.net
Small Business Information at Submission:

GENOMICS USA, INC.
GENOMICS USA, INC. 1041 E LOWELL ST, RM 438, BIOSCIENCES WEST TUCSON, AZ 85721

EIN/Tax ID: 175300185
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No