USA flag logo/image

An Official Website of the United States Government

SBIR Phase I:Power Management for Energy Harvesting

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
98994
Program Year/Program:
2010 / SBIR
Agency Tracking Number:
1013282
Solicitation Year:
N/A
Solicitation Topic Code:
5b
Solicitation Number:
N/A
Small Business Information
Triune Systems
681 N Plano Rd Suite 121 Richardson, TX 75081-2960
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2010
Title: SBIR Phase I:Power Management for Energy Harvesting
Agency: NSF
Contract: 1013282
Award Amount: $180,000.00
 

Abstract:

This Small Business Innovation Research (SBIR) Phase I project will research and develop state-of-the-art ultra-low power management integrated circuits (IC) for portable and energy harvesting solutions. The creation of floating gate technology for analog and power management applications will provide new methods and building blocks for solving ultra-low power consumption challenges needed for mobile and autonomous solutions. The novel modification of existing and newly developed analog processes and components will enable revolutionary high power, quality and reliable circuits, while maintaining an extremely low quiescent operating current. This is closely tied to energy harvesting solutions as the efficiency of transferring stored scavenged energy to electronic loads defines the size, cost, and adoption of autonomous systems. To make a harvesting system viable the modules will be highly efficient in their use of the available energy. An off-active switch module and an ultra-low quiescent current regulator will be developed utilizing floating gate techniques to obtain significant reductions in power consumption. The revolutionary off-active switch module, a function which does not exist in the market today, requires drawing near zero current from the battery when in the off-state. Low power regulators require ultra-low operating current levels needed to realize a harvesting system. The broader impact/commercial potential of this project is to provide circuit module building blocks for energy harvesting systems in market spaces such as wireless sensor networks. This will enable several of the harvesting and storage technologies currently under development in the US, gain greater market acceptance, reduce energy demand from non-renewable sources, and create technical leadership in the US for this market space. With the availability of these building blocks and making them readily available, system designers will have IC solutions in place to reduce their time in creating their systems to leverage energy harvesting. Up-integration of these modules can then be tailored for each application quickly, reducing the system cost and time to market.

Principal Investigator:

Wayne Chen
PhD
9722311606
wtfc@triunesystems.com

Business Contact:

Wayne Chen
PhD
9722311606
wtfc@triunesystems.com
Small Business Information at Submission:

TS
681 N Plano Rd Suite 121 Richardson, TX 75081

EIN/Tax ID: 204587421
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No