USA flag logo/image

An Official Website of the United States Government

New Material Compositions that Expand the Operating Domain of Piezoelectric…

Award Information

Agency:
Department of Defense
Branch:
Navy
Award ID:
77933
Program Year/Program:
2006 / STTR
Agency Tracking Number:
N064-034-0223
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
H. C. Materials Corporation
479 Quadrangle Dr. Suite-E Bolingbrook, IL -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2006
Title: New Material Compositions that Expand the Operating Domain of Piezoelectric Single Crystals
Agency / Branch: DOD / NAVY
Contract: N00014-06-M-0227
Award Amount: $69,915.00
 

Abstract:

At the present time, large-sized PMN-PT piezoelectric crystals, 3" diameter by 8" long, of high quality, can be grown directly from the melt and are commercially available. The objective of this proposal is to demonstrate the feasibility of expanding the operating domain of the PMN-PT based piezoelectric crystals by chemical doping and compositional refinements. Although the piezoelectric properties of PMN-PT crystal products are qualified to the military, and are commercially used in medical ultrasound imaging (and a variety of acoustic transducers), the coercive electric-field strengths and thermal stability need to be improved particularly for large signal/high energy applications. This is very important for Navy sonar transducers. For acoustic sensors, such as hydrophones and vector accelerometers, that require high signal/noise ratios, lowering of the dissipation factor is a key parameter while maintaining the giant-piezoelectric response characteristics. Radiation with high energy particles (e.g., neutrons) can localize "defects" that pin domain wall mobility. It expected that selected radiation damage will enhance coercivity. It is well known that the PMN-PT solid-solution system is the only one that is near congruent solidification, thus enabling the direct growth from the stoichiometric melt in a most cost-effective manner. This proposal focuses on new compositions that must be near congruent melting. Thus, the proposed work for new compositional refinement to PMN-PT based crystals will be of immediate applicability to the growth of large crystals, thus expanding the operating domain of piezoelectric single crystals.BENEFITS: The proposed work will enhance the piezoelectric performance of PMN-PT based crystals by chemical doping and compositional refinement using our proprietary and cost-effective Bridgman growth method. The proposed work is targeted for high-drive applications for single crystals in Navy sonar, torpedo guidance, torpedo counter measures, sensors, vibration control, shape control, position control, and also for commercial applications such as medical ultrasound imaging, nondestructive testing, etc. We anticipate domain-engineering will increase the properties of the final transduction devices.

Principal Investigator:

Pengdi Han
CEO
2172448369
han@hcmat.com

Business Contact:

David A. Payne
Proffessor
2173332937
dapayne@uiuc.edu
Small Business Information at Submission:

H. C. MATERIALS CORP.
2004 South Wright Street Urbana, IL 61802

EIN/Tax ID: 371364690
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Research Institution Information:
UNIV. OF ILLINOIS
Dept. of Materials Sci &Eng. 1
Urbana, IL 61801
Contact: David A. Payne
Contact Phone: (217) 333-2937
RI Type: Nonprofit college or university