USA flag logo/image

An Official Website of the United States Government

Robotic Tool Changer for Planetary Exploration

Award Information

Agency:
National Aeronautics and Space Administration
Branch:
N/A
Award ID:
88170
Program Year/Program:
2008 / SBIR
Agency Tracking Number:
075251
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Honeybee Robotics
460 West 34th Street New York, NY -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2008
Title: Robotic Tool Changer for Planetary Exploration
Agency: NASA
Contract: NNX08CD26P
Award Amount: $99,287.00
 

Abstract:

Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the weight of the robot arm. The current design philosophy of MER, Beagle 2, Phoenix & MSL, sees select tools and instruments permanently affixed to the arm end-effector. Future missions will be size & mass constrained and will need to be more capable than their predecessors. One technical solution that would enable deployment of multiple tools and instruments from a compact, lightweight manipulator is an electromechanical coupler or tool changing mechanism which can reliably take a tool or instrument out of a magazine and couple it, form-locking and force-locking, to the end-effector. The program's ultimate goal is to develop and demonstrate a highly reliable and scalable robotic tool-change system in a relevant environment from a relevant robotic platform. In Phase I, we will perform a detailed investigation of robotic tool-changer requirements, design strategies and tall poles for robotic systems exploring Mars and the Moon, including first order experiments to verify feasibility of specific enabling design features. Requirements such as cycles, stiffness, strength, repeatability, misalignment-tolerance and electrical characteristics will be derived by considering MER and Phoenix as models for instrument type and operational patterns, robotic arm capability and environment and by deriving future mission requirements. There are a few terrestrial applications (ROVs in the off-shore oil industry) and space applications (Shuttle and ISS RMS Latching End-Effector system) for which a subset of design strategies may be applicable. We will consider these and leverage lessons learned from our experience with (1) electromechanical systems for MER, Phoenix and MSL which perform reliably in dusty environments and (2) our high TRL designs for electrical and mechanical robotic connections both for Mars and on-orbit.

Principal Investigator:

Kiel Davis
Principal Investigator
6464597809
davis@honeybeerobotics.com

Business Contact:

Chris Chapman
Business Official
6464597802
chapman@honeybeerobotics.com
Small Business Information at Submission:

Honeybee Robotics Ltd.
460 W 34th Street New York, NY 10001

EIN/Tax ID: 880193033
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No