USA flag logo/image

An Official Website of the United States Government

Artificial Intelligence Enhanced Information Processing

Award Information

Agency:
Department of Defense
Branch:
Army
Award ID:
32810
Program Year/Program:
1996 / SBIR
Agency Tracking Number:
32810
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
I-MATH ASSOC., INC.
230 Cattail Ct, PO Box 560 Orlando, FL 32856
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 1996
Title: Artificial Intelligence Enhanced Information Processing
Agency / Branch: DOD / ARMY
Contract: N/A
Award Amount: $70,000.00
 

Abstract:

Performance of robotic systems would be enhanced through artificial intelligent fusion of the automatic target recognition (ATR) results (and associated underlying features ) of either a single platform or multiple platforms viewing the target/object from different position, i.e., multi-look fusion. Such fusion would be particularly relevant for partially obscured and/or background blended targets. We propose a multi-layer perceptron neural net for implementing the multi-look fusion. This neural net would be similar to that recently used by other ARL ATR researchers. Performance would be further enhanced by smart fusion of individual sensors classifier outputs, either on the same or multiple platforms, i.e., multi-sensor fusion. Our approach would start with the fusion scheme being investigated by us under another SBIR for Target Acquisition/Target Recognition (TATR) encompassing man-in-the-loop decision making. For the ARL SBIR, we will enhance the TATR fusion scheme by building an artificial intelligent agent that augments and automates aided fusion function, e.g., adaptive thresholding for multi-sensor fusion. This intelligent agent would also incorporate production rules for associating different views of the same object for multi-look fusion. the resulting algorithms will be applicable to ATR fusion implementations both on vehicles and fusion stations. Our multi-look and multi-sensor classifier fusion approaches are very practical for operational scenarios, because neither depends on precise co-registration of the various disparate sensors.

Principal Investigator:

Ronald Patton
4078882814

Business Contact:

Small Business Information at Submission:

I-math Associates, Inc.
230 Cattail Court P.o. Box 560788 Orlando, FL 32856

EIN/Tax ID:
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No