USA flag logo/image

An Official Website of the United States Government

Development of a calcium-phosphate nanocomplex fluoride-based mouthrinse

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
85543
Program Year/Program:
2007 / SBIR
Agency Tracking Number:
DE018576
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
INDIANA NANOTECH, LLC
351 WEST TENTH STREET INDIANAPOLIS, IN 46202-4119
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2007
Title: Development of a calcium-phosphate nanocomplex fluoride-based mouthrinse
Agency: HHS
Contract: 1R43DE018576-01
Award Amount: $100,000.00
 

Abstract:

DESCRIPTION (provided by applicant): Caries formation and progression is a disorder that affects nearly 80% of the U.S. population by age 17. While great success has been achieved in reducing caries incidence since the introduction of commercially availabl e fluoride, opportunities for improving the current art are not just available, they are in great demand. Therefore, identification of novel materials that could work synergistically with fluoride to enhance remineralization and further prevent demineraliz ation of the dentition could provide a tremendous public health benefit. Fluoride mouthrinses are a proven and favorable method of fluoride delivery, especially for high-risk caries groups including those wearing braces, those with xerostomia, and those wi th restorations. Therefore, the long-term goal of this research is to construct a single multi-mineral mouthrinse formulation that manifests stability between calcium-phosphate nanocomplexes and fluoride to provide increased levels of protection against ca ries than would be observed with fluoride alone. We posit these calcium-phosphate nanocomplexes can be formed through a mechanochemical ball milling technique and, as a result, are stable with fluoride. This well-known technique not only creates smaller pa rticle sizes but also modifies the chemical signatures of the milling material, thus setting it distinctly apart from usual milling methods. In this Phase I research application to the NIDCR, we propose to address the following Specific Aims: 1) Synthesize numerous surfactant-calcium phosphate nanocomplexes entirely in the solid-state using a novel mechanochemical ball milling process that is readily scaleable for commercial applications; 2) Test the kinetic and thermodynamic stability of the nanocomplex wh en added to basic sodium fluoride mouthrinse formulations; and 3) Evaluate the remineralization efficacy of the most promising stable nanocomplex-fluoride mouthrinse formulations using pH cycling remineralization/demineralization models and enamel fluoride uptake studies.

Principal Investigator:

Robert L. Karlinsey
3172787892
RKARLINS@GMAIL.COM

Business Contact:

George K. Stookey
rkarlins@gmail.com
Small Business Information at Submission:

INDIANA NANOTECH, LLC
351 WEST TENTH STREET INDIANAPOLIS, IN 46202

EIN/Tax ID: 120580364
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No