USA flag logo/image

An Official Website of the United States Government

Integrated oxygen/organic light-emitting device sensors

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
71334
Program Year/Program:
2004 / SBIR
Agency Tracking Number:
EB001513
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Integrated Sensor Technologies, Inc.
3138 Sycamore Rd Suite 208 169, IA 50014 4510
View profile »
Woman-Owned: Yes
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2004
Title: Integrated oxygen/organic light-emitting device sensors
Agency: HHS
Contract: 1R43EB001513-01A1
Award Amount: $100,000.00
 

Abstract:

DESCRIPTION (provided by applicant): The market for oxygen sensors is extremely large and continues to grow. Millions of medical patients in the U.S. alone require oxygen monitoring every year. Unfortunately, the current oxygen monitoring technology suffers from key drawbacks that limit the potential utility and cost-effectiveness of oxygen sensors for medical uses and many other applications: Electrochemical sensors are slow (response time >1 min), shortlived (a few days), and expensive (about $500). Current luminescence-based sensors are bulky, require trained operators, consume significant power, and are very expensive (about $2000). The overall goal of this multiphase SBIR project is to develop and commercialize a next-generation oxygen sensor designed to eliminate the drawbacks of current technology. As envisioned, the proposed device - based on a modular luminescence-based oxygen sensor structurally integrated with its ultrathin light-source, an organic light-emitting device (OLED) - will be initially about the size of a radiation badge and eventually much smaller, autonomous, fast (about 1 sec response), will consume very little power, and will be inexpensive (ultimately about $50, with an essentially disposable OLED/sensing element module). It will therefore replace the bulky and/or short-lived electrochemical or luminescence-based oxygen sensors that currently serve the very large medical, environmental, biological, food/brewing, and health/safety demands. The proposed integration, which results in strong light coupling and negligible heating of the sensor film or analyte, will demonstrate a new sensor platform especially suitable for heat-sensitive sensors or analytes. This new platform eliminates the need for bulky and/or costly excitation sources, and components such as optical fibers and couplers. Using the proposed platform, miniaturized sensor arrays with "front" and "back" fluorescent detection could ultimately be developed for enhanced versatility and multianalyte detection. In this Phase I SBIR we will demonstrate an integrated OLED/sensing element module with a concentration range of 0 - 100% molecular oxygen, an accuracy of 0.3%, a 2 sec response time, an operating temperature range of 5 - 50 degrees C, and a continuous operating lifetime of 1 month. These benchmarks either meet or exceed those of current bulk (as opposed to trace) oxygen sensors. In Phase II these benchmarks will be improved, and a complete autonomous prototype sensor device will be demonstrated.

Principal Investigator:

Ruth Shinar
5152924226
RSHINAR@IASTATE.EDU

Business Contact:

Ruth Shinar
5152924226
SHAINAR@MCHSI.COM
Small Business Information at Submission:

INTEGRATED SENSOR TECHNOLOGIES, INC.
INTEGRATED SENSOR TECHNOLOGIES, INC. 3138 SYCAMORE RD AMES, IA 50014

EIN/Tax ID: 300131675
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No