USA flag logo/image

An Official Website of the United States Government

Hydrogen-Rich, Multifunctional Polymeric Nanocomposites for Radiation Shielding

Award Information

Agency:
National Aeronautics and Space Administration
Branch:
N/A
Award ID:
88120
Program Year/Program:
2008 / SBIR
Agency Tracking Number:
075214
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2008
Title: Hydrogen-Rich, Multifunctional Polymeric Nanocomposites for Radiation Shielding
Agency: NASA
Contract: NNX08CC75P
Award Amount: $100,000.00
 

Abstract:

NASA has identified the need for the development of lightweight structures technologies to support Lunar Lander and Lunar Habitats programs and for the transfer of relevant technology to Crew Exploration Vehicle and Crew Launch Vehicle programs. NASA further calls for revolutionary advances in radiation shielding materials and structures technologies to protect humans from the hazards of space radiation during NASA missions. To address this need and in response to NASA Subtopic X6.03, International Scientific Technologies, Inc. in conjunction with the College of William and Mary, proposes the development of hydrogen-rich monomers for high performance polymers, such as polyimides, and the incorporation of metallic nanoparticles to form nanocomposite materials having multifunctional properties. The Phase I Technical Objectives include preparation of hydrogen-rich monomers, fabrication of polymeric nanocomposite films, and acquisition of test data to determine key parameters for optimal radiation-shielding materials. The anticipated result of the Phase I and Phase II programs is the development of polymeric nanocomposite materials consisting of hydrogen-rich monomers and metallic nanoparticles. The nanocomposite materials have multifunctional properties of radiation shielding against galactic cosmic radiation, neutrons and electromagnetic radiation, structural integrity to permit use in flexible and rigid structures and habitats, and electrical conductivity for electrostatic control to be used in dust mitigation during lunar missions.

Principal Investigator:

Russell J. Churchill
Principal Investigator
5406331424
intlsci@earthlink.net

Business Contact:

Wanda S. Gibson
Chief Financial Officer
5406331424
intlsci@earthlink.net
Small Business Information at Submission:

International Scientific Technologies, Inc.
P.O. Box 757 Dublin, VA 24084

EIN/Tax ID: 201088508
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No