USA flag logo/image

An Official Website of the United States Government

Drug-Eluting Bioresorbable Polymer Scaffolding for Treatment of Aortic Aneurysms

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
93974
Program Year/Program:
2009 / SBIR
Agency Tracking Number:
HL097437
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
MEDSHAPE, INC.
1575 NORTHSIDE DR, STE 440 ATLANTA, GA 30318-4211
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2009
Title: Drug-Eluting Bioresorbable Polymer Scaffolding for Treatment of Aortic Aneurysms
Agency: HHS
Contract: 1R43HL097437-01
Award Amount: $159,056.00
 

Abstract:

DESCRIPTION (provided by applicant): This proposal is focused on the development of a bioabsorbable polymeric scaffold intended to provide both time-release delivery of therapeutic agents as well as structural support in the treatment of aortic aneurysms. An abdominal aortic aneurysm (AAA) is a condition in which the aorta, the main blood vessel in the abdomen, expands like a balloon. The aneurysm weakens the wall of the aorta and can result in rupture. Because the volume of blood flowing through the aorta is under relatively high pressure, a rupture can be catastrophic, resulting in death. Up to 75% of patients are asymptomatic prior rupture. In the United States, approximately one in every 250 people over the age of 50 will die of a ruptured aortic aneurys m. Aortic aneurysms affect as many as eight percent of people over the age of 65 and remains the 13th leading cause of death in the United States, accounting for more than 15,000 deaths each year. Current treatment options for AAA are limited to the surgic al removal of the aneurysm and replacement with artificial grafts or intravascular placement of a stent-graft intended to provide a bypass for blood flow through the aneurysmal space. However, both approaches have limitations. Surgical revision rates have been reported as high as 26% and post-operative complications rates as high as 41%. While the use of stent-grafts has been increasing in recent years due to their minimally invasive approach, this procedure is not applicable to all patients. The occurrence of unfavorable anatomy limits the utility of these devices. In 2007, over 60,000 procedures of either surgical revision or endovascular stent-graft placement were performed in the US alone. This does not take into account the nearly 26% revision rates rep orted for endovascular stent-grafts, nor does it account for the nearly 50% of patients ineligible for endovascular stent-grafts due to unfavorable anatomy. Recent research performed by the collaborators of this proposal from Emory University has shown tha t in the setting of AAA formation, the smooth muscle component of the arterial wall undergoes apoptosis and ceases to be mechanically relevant. The adventitia becomes thickened and assumes the role as the major load bearing component of the vessel wall. Ov erall, these results have lead us to suggest that since the adventitia is the vulnerable component of the arterial wall in advanced AAA, that an outside-in therapy to mechanically and biologically stabilize the vessel wall may represent a more efficaciou s approach to aneurysm repair than those currently offered. MedShape Solutions has been working on a series of bioabsorbable polymers capable of carrying various therapeutic agents. The proposed bioabsorbable polymeric scaffold will be developed to provide for the delivery of an agent to treat the aneurysmal tissue as well as provide structural support for the diseased portion of the aorta to prevent further expansion and/or rupture. Neither of the current treatment options discussed above are capable of tr eating the underlying cause of the disease state, and while the surgical graft removes the diseased aortic segment, neither it nor the endovascular stent-graft are capable of preventing the progression of the disease. In addition, the polymer chemistries p roposed are capable of in-situ polymerization which would allow the placement of the scaffold around aortic segments that would normally be classified as having unfavorable anatomy and that might go untreated otherwise. Finally, the delivery system to be d eveloped will be compatible with laparoscopic techniques which would make it significantly less invasive than surgical repair. The aims of the Phase I proposal have been designed to fundamentally investigate the polymeric scaffolding chemistry as it relate s to mechanical characteristics as well as biodegradation and drug elution capability. In addition, a prototype delivery system for the drug/device combination will be developed and evaluated ex-vivo to determine ease of use and to trouble shoot some the e xpected challenges associated with mixing the polymer in a partially polymerized state (oligomer), combined with a therapeutic agent in solution, and polymerized in-situ while being placed over and around the diseased aortic segment. The primary research t eam will consist of Jack Griffis (PI), who is an expert in cardiovascular device development and testing; Ken Gall PhD, a full professor from Georgia Tech who specializes in specialty polymers; and W. Robert Taylor, MD, a cardiologist from Emory University that specializes in vascular diseases, especially AAA. PUBLIC HEALTH RELEVANCE: Abdominal aortic aneurysms (AAA) affect as many as eight percent of people over the age of 65 and remains the 13th leading cause of death in the United States, accounti ng for more than 15,000 deaths each year. In addition, for those who receive treatment, surgical revision rates are as high as 26% and up to 50% of those diagnosed are not eligible for the latest, minimally invasive techniques. This project will provide an approach that is both compatible with minimally invasive techniques as well as provide a means to reduce post-operative complications while delivering therapeutic agents directly into the aneurysmal tissue.

Principal Investigator:

Jack C. Griffis
4045836889
JACK.GRIFFIS@MEDSHAPESOLUTIONS.COM

Business Contact:

Jacobus Kurt
kurt.jacobus@medshapesolutions.com
Small Business Information at Submission:

MEDSHAPE SOLUTIONS, INC.
MEDSHAPE SOLUTIONS, INC. 1575 NORTHSIDE DR STE 440 ATLANTA, GA 30318

EIN/Tax ID: 126057814
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No