You are here

Microwave-Based Diamond Deposition Process for Coating of Materials

Award Information
Agency: Department of Defense
Branch: Defense Advanced Research Projects Agency
Contract: N/A
Agency Tracking Number: 26713
Amount: $98,334.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Timeline
Solicitation Year: N/A
Award Year: 1994
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
8917 Glenwood Avenue
Raleigh, NC 27622
United States
DUNS: N/A
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Arvid Johnson
 (919) 781-4260
Business Contact
Phone: () -
Research Institution
N/A
Abstract

This proposed effort utilizes an existing DoD technology, known as a traveling wave tube (TWT), as a broadband, high-power plasma source. The TWT will permit optimization of processing parameters over a frequency range larger and wider than has previously been examined and will allow optimum, real-time control of the process parameters. This source technology will be combined with a water-based diamond deposition chemistry, which offers considerable advantages over traditional hydrogen-methan chemistries in both safety and manufacturing cost. The goal of this proposed effort is to develop a TWT-based flexible diamond manufacturing process tool. Previous work by MLI -- in cooperation with the Research Triangle Institute -- has already demonstrated that TWTs can be used to generate high-freqency, microwave-excited plasmas for diamond deposition at fixed frequencies. This Phase I effort will demonstrate controlled, variable-frequency operation. This proposed effort will couple microwave energy from a TWT into a cylindrical cavity and use variable frequency operation to raster the plasma along the surface of a carbon composite sample -- thereby demonstrating the feasibility of controlling the efficienty deposition of diamond films over unique geometries. Anticipated Benefits: Diamond films have properties -- e.g., thermal conductivity, chemical inertness, abrasion resistane -- which meet the requirements of a variety of military, space, and commercial applications: scratch-resistant coatings, wear-resistant high-speed bearings, heat sinks and thermal management devices, and anti-corrosion protection. Successful demonstration of plasma spatial rastering has the potential to revolutionize many CVD and CVI technologies and processes.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government