USA flag logo/image

An Official Website of the United States Government

STTR PHASE I: Innovatve Laser Ablation Techniques for Increasing Catalyst…

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
88482
Program Year/Program:
2008 / STTR
Agency Tracking Number:
0740569
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Mound Laser & Photonics Center, Inc.
2941 College Dr. Kettering, OH -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2008
Title: STTR PHASE I: Innovatve Laser Ablation Techniques for Increasing Catalyst Utilization in PEM Fuel Cells
Agency: NSF
Contract: 0740569
Award Amount: $149,975.00
 

Abstract:

This Small Business Technology Transfer (STTR) Phase I project will dramatically improve electrocatalyst utilization in PEM fuel cells to reduce their cost and ultimately assure their commercial viability in transportation applications. Using current technology, the cost of mass- produced PEM fuel cells is driven by the cost of platinum catalyst, yet the vast majority of the platinum is unutilized; dispersed largely onto inaccessible areas of the porous electrode. Using a novel thin-film laser ablation technique, this project seeks to achieve deposition of appropriately sized catalyst nanoparticles directly onto a polymer electrolyte precisely where they are needed. In combination with more durable electrode materials, this approach has the potential to reduce catalyst requirements to a tiny fraction of current levels. Program efforts will first optimize the laser ablation conditions to create and deposit dense distributions of non-agglomerated catalyst nanoparticles on solid polymer electrolyte films. These will then be used to fabricate and test membrane electrode assemblies (MEAs). The anticipated result is a more easily controlled, dry chemistry, high volume, reel-to-reel process to produce cheaper, more effective components that will make fuel cells viable for transportation applications, initially in scooters and low velocity Neighborhood Electric Vehicles, and ultimately in automobiles. The broader impact/commercial potential from the technology will be a method for deposition of fuel cell catalyst particles by laser ablation, resulting in affordable PEM fuel cells; this could have wide ranging impact on society and manufacturing science. The addition of a fuel cell charger will give all-electric vehicles increased range and usefulness. Ultimately replacing the internal combustion engines with practical, economical fuel cells which will provide an alternative that can reduce American dependence on foreign oil, reducing pollution, and green house gas emissions Applications may also extend to non-transportation sectors, such as remote, on-site power generators for buildings (bringing affordable energy to off-grid locations), and miniature fuel cells to power consumer electronics.

Principal Investigator:

Ronald L. Jacobsen
PhD
9378654046
rljacobsen@mlpc.com

Business Contact:

Ronald L. Jacobsen
PhD
9378654046
rljacobsen@mlpc.com
Small Business Information at Submission:

Mound Laser & Photonics Center, Inc.
720 Mound Ave COS-308 Miamisburg, OH 45342

EIN/Tax ID: 030409881
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Research Institution Information:
University of Dayton
300 College Park
Dayton, OH 45469
Contact: Paul Murray
Contact Phone: (937) 865-4046
RI Type: Nonprofit college or university