USA flag logo/image

An Official Website of the United States Government

New Proton Exchange Membranes with Improved Methanol Permeability for Direct…

Award Information

Agency:
Department of Energy
Branch:
N/A
Award ID:
68954
Program Year/Program:
2004 / SBIR
Agency Tracking Number:
72452S03-II
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
NANOSONIC INC.
158 WHEATLAND DR Pembroke, VA 24136-0000
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2004
Title: New Proton Exchange Membranes with Improved Methanol Permeability for Direct Methanol Fuel Cell (DMFC) Applications
Agency: DOE
Contract: DE-FG02-03ER83728
Award Amount: $750,000.00
 

Abstract:

72452-Current membrane technology needs to be improved if direct methanol fuel cells (DMFC) are to be used to power electronic devices. Polymer electrolyte/proton exchange membrane (PEM) fuel cell systems represent an environmentally friendly power source for a wide range of applications ¿ transportation, stationary power generation, and consumer electronics. This project will develop and commercialize ion-conducting thermally stable polymers for use as high-temperature, proton-exchange-membrane/membrane-electrode-assembly (PEM/MEA) materials with low methanol permeability as components of DMFC. In Phase I, sulfonated ion-conducting sites were introduced via direct polymerization, allowing control of both their location and concentration. The research showed not only that the materials could be synthesized, but also that they exceed the conductivity and methanol permeability performance of perfluorinated sulfonic acid Nafion materials at or above room temperature. Phase II will optimize the design and fabrication of membrane electrode assemblies (MEAs) using an inkjet deposition technique to control the location, thickness, and porosity of the electrode nanocomposites on to the proton exchange membrane. Commercial Applications and Other Benefits as described by awardee: New low cost and high performance membrane materials would allow the PEM fuel cell concept to be extended to other applications where output stability may be a major concern: e.g., portable remote power or regenerative fuel cells. In addition, the technology could find use as part of a computing power system, where system downtime is unacceptable.

Principal Investigator:

Jeffrey B. Mecham
Dr.
5409531785
ibmecham@nanosonic.com

Business Contact:

Richard O. Claus
Dr.
5409531785
roclaus@nanosonic.com
Small Business Information at Submission:

Nanosonic, Inc.
P.O. Box 618 Christiansburg, VA 24068

EIN/Tax ID: 541877635
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No