USA flag logo/image

An Official Website of the United States Government

Bottom-Up Self-Assembly of Visible Wavelength Metamaterials

Award Information

Agency:
Department of Defense
Branch:
Defense Advanced Research Projects Agency
Award ID:
86321
Program Year/Program:
2008 / SBIR
Agency Tracking Number:
07SB2-0500
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
NANOSONIC INC.
158 WHEATLAND DR Pembroke, VA 24136-0000
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2008
Title: Bottom-Up Self-Assembly of Visible Wavelength Metamaterials
Agency / Branch: DOD / DARPA
Contract: W31P4Q-08-C-0176
Award Amount: $99,000.00
 

Abstract:

This program would investigate the feasibility of molecular-level "bottom-up" chemical processing to form metamaterials for operation in the visible and near-IR portion of the electromagnetic spectrum. Electrostatic self-assembly (ESA) processes would be used to pattern multilayer arrays of straight and curved conducting segments dimensioned to resonantly absorb electric and magnetic field components. ESA has been used through prior work to manufacture multilayered and patterned materials with controlled multiple constitutive properties, specifically high electron transport efficiency. Resonant segments would be formed from sparse arrays of individual metal nanoclusters. Electron transport in such arrays occurs by quantum mechanical electron hopping rather than by conventional drift field mechanisms such as those in bulk metal conductors; NanoSonic's Metal RubberT is an example of a material that exhibits such behavior. Two "top-down" photolithographic patterning methods would be studied for integration with the self-assembly process, as an alternative to strictly patterning at the molecular level. The bottom-up and top-down processes would be compared in terms of resonant element patterning resolution and array periodicity, and the ability to potentially transition to large area spatial formats. Measurements of material properties, patterning resolution and far-field propagation would be used to downselect the optimal process for further development.

Principal Investigator:

Richard O. Claus
President
5409531785
roclaus@nanosonic.com

Business Contact:

Lisa B. Lawson
Contracts Administrator
5409851785
llawson@nanosonic.com
Small Business Information at Submission:

NANOSONIC, INC.
P.O. Box 618 Christiansburg, VA 24068

EIN/Tax ID: 541877635
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No