USA flag logo/image

An Official Website of the United States Government

Bioadhesive Membrane Construct for Hernia Repair

Award Information

Department of Health and Human Services
Award ID:
Program Year/Program:
2008 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Nerites Corporation
525 Science Drive Suite 215 Madison, WI -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2008
Title: Bioadhesive Membrane Construct for Hernia Repair
Agency: HHS
Contract: 1R43DK083199-01
Award Amount: $116,307.00


DESCRIPTION (provided by applicant): A hernia occurs when part of an internal organ bulges through a weak area of muscle, with most hernias occurring in the abdomen. Surgical hernia repair is one of the most commonly performed surgeries in the US. While us ing prosthetic mesh as a reinforcement has significantly improved surgical outcomes, the rate of hernia recurrence remains high (30-50%). Current prosthetic materials are associated with numerous complications, including increased risk of infection, prosth etic shrinkage and host-foreign body reactions, leading to a diminished postoperative patient quality of life. The recent introduction of various biologic prosthetic meshes derived from modified human or porcine tissue have demonstrated lower rates of infe ction as compared to their synthetic counterparts. Equally important, effective immobilization of the mesh against the abdominal wall is critical to hernia repair success. Currently, sutures and staples are used to hold synthetic and biologic meshes in pla ce, but these can be a source of nerve damage and chronic discomfort. Thus, there continues to be a need to develop alternative fixation methods that can effectively secure the mesh to the abdominal wall as well as improve long- term biocompatibility of th ese meshes. Marine mussels provided the inspiration for the new technology presented in this proposal. By releasing rapidly hardening, tightly binding adhesive proteins, marine mussels have the ability to anchor themselves to various surfaces in a wet, tur bulent, and saline environment. Both natural proteins and their synthetic mimics can bind strongly to various substrates ranging from biological tissues to metal surfaces. In this proposal, biomimetic synthetic adhesives will be combined with a natural sca ffold to create a novel bioadhesive prosthetic. The intent of such a construct is to create an effective repair with minimized long-term infection rate and chronic patient discomfort typically associated with permanent prosthetic materials. The feasibility of using such a material for hernia repair will be tested. PUBLIC HEALTH RELEVANCE Bioadhesive Membrane Construct for Hernia Repair Hernia repair is one of the most frequently performed surgical procedures in the United States. Current repair methods and materials have exhibited mixed success, but each has limitations such as high recurrence rate and persistent patient discomfort. The development and evaluation of a novel bioadhesive membrane construct for hernia repair is described here.

Principal Investigator:

Bruce P. Lee

Business Contact:

Small Business Information at Submission:


EIN/Tax ID: 200763298
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No