USA flag logo/image

An Official Website of the United States Government

Deep Brain Stimulation Array for Neuromodulation

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
85944
Program Year/Program:
2007 / SBIR
Agency Tracking Number:
NS060269
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
NEURONEXUS TECHNOLOGIES
3985 RESEARCH PARK DR ANN ARBOR, MI -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2007
Title: Deep Brain Stimulation Array for Neuromodulation
Agency: HHS
Contract: 1R43NS060269-01
Award Amount: $240,348.00
 

Abstract:

DESCRIPTION (provided by applicant): Chronic Deep Brain Stimulation (DBS) emerged in the last decade as a revolutionary new approach to the treatment of neurological and psychiatric disorders. DBS is currently approved for treatment of Parkinson's Disease (PD) and Essential Tremor and is showing promise for treatment of dystonia, intractable epilepsy, major depression, and obsessive-compulsive disorder. DBS therapy involves controllable electrical stimulation through a lead having four relatively large elec trodes that implanted in the targeted region of the thalamus or basal ganglia. While DBS therapy is generally safe and effective for reducing cardinal symptoms of the approved diseases, it often has significant behavioral and cognitive side effects and lim its on performance. Additionally, experimental and computational studies have revealed complex mechanisms of action for specific disease states. The growing body of clinical and scientific evidence strongly suggests that details such as fine electrode posi tioning, selectivity, and precise stimulation patterning are very important for clinical outcomes. The proposed Deep Brain Stimulating Array (or DBSA) is an electrode array designed for long-term stimulation and is comprised of many microelectrode sites, t herefore providing significantly enhanced stimulation selectivity, precision, and tunability. The technical innovation of this device is the use of a large number of smaller sites (64 sites) that can be used individually or in selectable groups in order to achieve more diverse electrical stimulation patterns. This array of sites will significantly expand the tunable range of the device in order to better fit the DBS therapy to the patient. It will also provide the capability of incorporating feedback contro l through neural recordings (32 sites) for eventual on-demand DBS, similar to that of modern cardiac pacemakers. The specific goals of this SBIR Phase I proposal are to develop a prototype version of the DBSA and to evaluate its feasibility for selective a nd tunable DBS therapy. The prototype DBSA will be used to evaluate critical packaging, materials, and functional attributes of the device. The first specific aim is to develop a prototype DBSA, with the expected outcome of this aim being a validated first generation prototype device. The second specific aim is to evaluate the electrical stimulation characteristics of the DBSA. The expected outcome of this aim will be an analytical and experimental analysis of the stimulation capabilities of the DBSA. The t hird specific aim is to evaluate the chronic tissue reactions to the DBSA. The expected outcomes of this aim are preliminary data on the safety and biocompatibility of the chosen materials, geometrical specifications and stimulation protocols. NeuroNexus i s leading this project in collaboration with FHC, the University of Michigan and consultants from the Cleveland Clinic. The multi-disciplinary project team possesses the experience, skill sets, and resources to meet the project goals and, in the process, t o move the field of neural engineering ahead. The primary objective of this project is the development of an advanced electrode technology used for deep brain stimulation (DBS) therapy. DBS is a common therapeutic approach for the treatment of Parkinson's Disease, and potentially other movement related disorders.

Principal Investigator:

Rio J. Vetter
7347860069
RVETTER@NEURONEXUSTECH.COM

Business Contact:

Vetter R. Vetter
jfh@neuronexustech.com
Small Business Information at Submission:

NEURONEXUS TECHNOLOGIES
NEURONEXUS TECHNOLOGIES 3985 RESEARCH PARK DR ANN ARBOR, MI 48108

EIN/Tax ID: 201398605
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No