USA flag logo/image

An Official Website of the United States Government

SBIR Phase I: IPPM: IN-LINE PIERCING PROCESS MONITORING FOR SEAMLESS TUBE…

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
91137
Program Year/Program:
2009 / SBIR
Agency Tracking Number:
0944614
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Og Technologies, Inc.
4300 Varsity Drive, Suite C Ann Arbor, MI 48108-5010
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2009
Title: SBIR Phase I: IPPM: IN-LINE PIERCING PROCESS MONITORING FOR SEAMLESS TUBE MANUFACTURING
Agency: NSF
Contract: 0944614
Award Amount: $150,000.00
 

Abstract:

This Small Business Innovation Research (SBIR) Phase I project seeks to verify the feasibility of an imaging based monitoring system for the piercing process used in the manufacturing of seamless steel tubes. Piercing is the core process of seamless tubes manufacturing, the process that puts a hole in a steel bar without drilling chips. Seamless tubes are crucial materials in many critical applications ranging from energy, chemical, automotive, aerospace to infrastructure. Piercing, if not done correctly, could cause tube quality issues. The proposed innovation consists of a set of imaging sensors for measuring the part vibrations in the piercing process. The vibration data will be used to derive the piercing conditions for critical failure modes through advanced mathematical analysis. This project is expected to validate the new approach on selected tubes, forming the basis for the commercialization of a new piercing monitoring system. This project will be carried out by a team consisting of industry-academia collaboration. Tests in a tube mill are planned for performance verification. The broader impact/commercial potential of this project is very significant. This project presents an approach with soft as well as hard sensors to control a highly stochastic and non-linear process. When commercialized, it will improve seamless steel tubing manufacturing by reducing mill downtime, fewer set-up pieces, and tightened tolerances. This project also reduces the pollution emissions and costly energy consumption associated with remanufacturing or reworking out-of-tolerance products. Industry-wide adoption across the seamless tube and pipe industry could yield drastic reductions in waste byproducts and would produce a cost savings of $250 million per year. Scientifically, the project could have an impact on the adoption of emerging high dimensional data analysis techniques. The project carries strong educational implication due to the close working relationship with the academia. Social impact is also expected with this project, by improving energy preservation and environmental protection. The estimated benefits include energy savings of 3 terawatt-hours and reduction of 300,000 tons of carbon-equivalent emission and 260,000 tons of toxic waste per year. Beyond the piercing process, the success of the project will also provide generic modeling and analysis tools for systems with complex information.

Principal Investigator:

Tzyy-Shuh Chang
PhD
7349737500
chang@ogtechnologies.com

Business Contact:

Tzyy-Shuh Chang
PhD
7349737500
chang@ogtechnologies.com
Small Business Information at Submission:

OG TECHNOLOGIES, INC
4300 VARSITY DR STE C ANN ARBOR, MI 48108

EIN/Tax ID: 383447449
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No