USA flag logo/image

An Official Website of the United States Government

Printable Nano-Field Effect Transistors Combined with Carbon Nanotube Based…

Award Information

Agency:
National Aeronautics and Space Administration
Branch:
N/A
Award ID:
87989
Program Year/Program:
2008 / SBIR
Agency Tracking Number:
075114
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
OMEGA OPTICS, INC.
10435 BURNET RD, STE 108 AUSTIN, TX -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2008
Title: Printable Nano-Field Effect Transistors Combined with Carbon Nanotube Based Printable Interconnect Wires for Large-Area Deployable Active Phased-Array
Agency: NASA
Contract: NNX08CB39P
Award Amount: $100,000.00
 

Abstract:

Flexible electronic circuits can be easily integrated with large area (>10m aperture), inflatable antennas to provide distributed control and processing functions. Flexible electronic circuits can also perform dynamic antenna sub-arraying and gain pattern reconfiguration for active phased-array antenna (PAA) and thus significantly enhance the reliability of NASA's space radar systems. However, existing flexible electronics are based on organic semiconductor materials that have carrier mobility four orders of magnitude lower than conventional single crystal silicon. Such low carrier mobility limits the operating speed of flexible electronics to a few kilohertz and thus makes it unsuitable for multi-GHz RF antenna applications. The proposed research aims to develop a printable silicon nano-FET with high carrier mobility of over 400 cm2/Výýs. Such high carrier mobility provides an unprecedented opportunity to achieve flexible electronics with high operating frequency of over 40GHz. We will also develop procedures for printing of conducting interconnect wires using carbon nanotubes, which is critical for printing semiconductors. Based on our past experience on printable silicon nano-FET and printable carbon nanotube wires, the high-speed flexible electronics are expected to be integrated with large-area, inflatable radar antennas and achieve smart antenna systems for high performance and reliable space operations.

Principal Investigator:

Maggie Y. Chen
Principal Investigator
5129968833
maggie.chen@omegaoptics.com

Business Contact:

Clara Chen
Business Official
5129968833
clara.chen@omegaoptics.com
Small Business Information at Submission:

Omega Optics, Inc.
10435 Burnet Road, Suite 108 Austin, TX 78758

EIN/Tax ID: 743016162
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No