USA flag logo/image

An Official Website of the United States Government

SBIR Phase II: Efficient Light Out Coupling from AlGaN Light Emitting Diodes

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
69003
Program Year/Program:
2005 / SBIR
Agency Tracking Number:
0338855
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
PHOSPHORTECH
351 THORNTON RD, STE 130 LITHIA SPRINGS, GA 30122-4118
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2005
Title: SBIR Phase II: Efficient Light Out Coupling from AlGaN Light Emitting Diodes
Agency: NSF
Contract: 0522067
Award Amount: $499,961.00
 

Abstract:

This Small Business Innovation Research (SBIR) Phase II project will develop novel graded-index (GIN) structures for blue/UV light emitting diodes (LEDs). Solidstate LEDs (SSLs) are among the most efficient converters of electrical energy into light and additionally have the advantages of long lifetime, excellent reliability, low power consumption, light weight, small size and excellent resistance to mechanical shock and vibration. These significant benefits over conventional lighting explain why, according to a recent study, the average growth rate for the SSL market is expected to be around 200% per year for the next five years.Since LEDs are narrow-band emitters, they must be coupled to an efficient downconverting phosphor in order to achieve the broad emission necessary for the generation of white light. However, even for a perfect phosphor, high efficiency will not be achievable unless there is also efficient out-coupling of radiation from the LED into the phosphor and from the phosphor to air. The resulting losses associated with outcoupling are due to the difference in refractive indices (n) of adjacent material layers that cause Fresnel Reflections and total internal reflection (TIR). In Phase I the research team has developed unique material structures and electrophoretic (EP) deposition process that are expected to realize high out-coupling efficiencies from LEDs at low costs. During Phase I, the feasibility of the EP deposition process has been successfully demonstrated and the advantage of an index-matching structure has been shown to significantly (~50%) improve the light extraction efficiency in LEDs. This fact was demonstrated both experimentally and theoretically using ray tracing simulations. In Phase II the work will focus on refining these structures for blue/UV LED's to develop the efficient down- converting technology for enabling the new solid state lighting systems. Commercially if SSL technology can achieve this projected goal, the lighting industry would be revolutionized. Potentially an efficiency of 200lm/W is possible, more than 2X better than that of fluorescent lamps (80lm/W), and more than 10X better than that of incandescent lamps (15lm/W). If current lighting, with an aggregate efficiency of roughly 50lm/W (in between the efficiencies of fluorescent and incandescent lamps), were replaced by semiconductor lighting with an aggregate efficiency of 150lm/W (somewhat less than the target), then the electricity currently used for illumination would decrease by a factor of three, from 2,350TWh to 780TWh. This would represent a decrease in global electricity use of 13%, and a decrease in global energy use and associated carbon emissions of 2.3%. In the U.S., the potential reduction in electricity consumption due to lighting is expected to be as high as 50% by the year 2025.

Principal Investigator:

Hisham M. Menkara
Dr
4046645008
hisham@phosphortech.com

Business Contact:

Hisham M. Menkara
Dr
4046645008
hisham@phosphortech.com
Small Business Information at Submission:

PhosphorTech Corporation
351 Thornton Road Lithia Springs, GA 30122

EIN/Tax ID:
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No