USA flag logo/image

An Official Website of the United States Government

Proteases and tags for protein purification and analysis

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
79876
Program Year/Program:
2007 / SBIR
Agency Tracking Number:
GM076786
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
POTOMAC AFFINITY PROTEINS, LLC
11305 DUNLEITH PL NORTH POTOMAC, MD -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2007
Title: Proteases and tags for protein purification and analysis
Agency: HHS
Contract: 2R44GM076786-02
Award Amount: $749,506.00
 

Abstract:

DESCRIPTION (provided by applicant): The long-term objective is to commercialize a system for rapid purification of proteins from cloned genes. The system should be suitable for both high throughput, parallel purification of proteins on the laboratory scal e, as well as process-scale purification of pharmaceutical proteins. This technology was developed as a result of NIH-funded studies on the prodomain- mediated folding reaction of the Bacillus protease subtilisin. The two fundamental components of this sys tem are: 1) A highly engineered protease (psub) which hydrolyzes specific substrates in response to a fluoride trigger; 2) The high affinity interaction between psub and an engineered version of its prodomain (protag). This components are combined to creat e a purification system in which immobilized psub is used both as the binding molecule for affinity purification of protagged fusion proteins and as the processing protease for protag removal. The four experimental aims are: 1) Engineer site-directed immob ilization of psub; 2) Optimize large scale production and purification of psub; 3) Create and test high-throughput methods for protein purification, quantitation and analysis; 4) Identify second generation psubs with refined chemical triggers. Recombinant proteins are frequently fused with other proteins or peptides to facilitate expression and purification. The tags provide a temporary hook for affinity purification, but ultimately must be processed by a site-specific protease. Tag removal, however, is fre quently inefficient and sometimes problematic. The technical innovation of the system is the integration of tag removal into the purification process. This provides simplicity and efficiency that isn't available in any other system. The technology should b enefit anyone purifying proteins but the impact on structural genomics efforts which rely on parallel processing of samples should be particularly great. The technology should eventually benefit process scale purification of pharmaceutical proteins. The ab ility to rapidly produce large quantities of therapeutic proteins could be critical for responding to both naturally-emergent and intentionally-introduced pathogens. The technology being developed in this project should benefit anyone purifying proteins bu t the impact on structural genomics efforts which rely on high throughput, parallel processing of samples should be particularly great. The technology should eventually benefit large-scale purification of pharmaceutical proteins. The ability to rapidly pro duce large quantities of therapeutic proteins could be critical for responding to both naturally-emergent and intentionally-introduced pathogens.

Principal Investigator:

Biao Ruan
3016109687
RUAN@UMBI.UMD.EDU

Business Contact:

Bonnie Bryan
potomac_affinity@msn.com
Small Business Information at Submission:

POTOMAC AFFINITY PROTEINS, LLC
POTOMAC AFFINITY PROTEINS, LLC 11305 DUNLEITH PL NORTH POTOMAC, MD 20878

EIN/Tax ID: 202913258
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No