USA flag logo/image

An Official Website of the United States Government

UNIFIED GENERALIZED BAYESIAL ACCRUAL OF EVIDENCE FOR DATA FUSION

Award Information

Agency:
Department of Defense
Branch:
Air Force
Award ID:
40935
Program Year/Program:
1998 / SBIR
Agency Tracking Number:
40935
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Scientific Systems Company, Inc
500 West Cummings Park - Ste 3000 Woburn, MA 01801-
View profile »
Woman-Owned: No
Minority-Owned: Yes
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 1998
Title: UNIFIED GENERALIZED BAYESIAL ACCRUAL OF EVIDENCE FOR DATA FUSION
Agency / Branch: DOD / USAF
Contract: N/A
Award Amount: $100,000.00
 

Abstract:

The lack of a solid foundation for filtering and fusing servations (e.g. features, natural-language statements, rules) has produced such a proliferation of techniques that current-generation evidence accrual suffers from the YARC ( syndrome. The proposed project addresses this problem by developing a unified, theoretically defensible, and computationally tractable paradigm that will ultimately permit the simultaneous estimation of target numbers, identities, and kinematics based on the systematic accrual of all types of evidence, including: random point data, ambiguous obseravations, and image data. Our approach, which we call Bayesian Multisource, Multi-target, Multi-evidence Filtering (or Bayesian multi-filtering (BMF) for short), is a direct generalization of recursive Bayes-Markov nonlinear filtering (NLF) theory. BMF generalized NLF to: (1) multiple targets of unknown number, identity, and kinematics, observed by multiple sensors, including (2) sensors which collect image data; and (3) sources which collect ambiguous observations. Specific Phase I tasks are: (1) Develop or acquire simulated multi-source data for multi sensor sources. (2) Develop multi-source, multi-target, multi-evidene unified evidence accrual algortihms. (3) Test and evaluate the novel evidence accrual algorithms. (4) Statistically characterize the performance error of the novel algorithms. (5) Final report and Phase II recommendations. Phase II will further develop the chosen evidence accrual paradigm and evaluate it using appropriate metrics. The project team includes Dr. Ronald Mahler of Lockheed Martin and Dr. Anuj Srivastava, both originators of BMF algorithms. Lockheed Martin will provde technical and commercialization support in the application of BMF.

Principal Investigator:

B Ravichandran
7819335355

Business Contact:


0
Small Business Information at Submission:

SCIENTIFIC SYSTEMS CO., INC.
500 WEST CUMMINGS PARK Woburn, MA 01801

EIN/Tax ID:
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No