USA flag logo/image

An Official Website of the United States Government

Novel Simulated Moving Bed Chromatography Device to Purify Recombinant Proteins

Award Information

Department of Health and Human Services
Award ID:
Program Year/Program:
2007 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
505 South Rosa Rd MADISON, WI 53719-
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 1
Fiscal Year: 2007
Title: Novel Simulated Moving Bed Chromatography Device to Purify Recombinant Proteins
Agency: HHS
Contract: 1R43GM080113-01
Award Amount: $107,650.00


DESCRIPTION (provided by applicant): In various proteomics initiatives there is a significant effort to determine detailed molecular structures of the thousands of proteins and protein complexes that govern various cellular processes. Protein structural an alysis by X-ray crystallography and NMR requires tens of milligrams of highly purified proteins. Over the past five years, the Protein Structure Initiative has been successful in developing high-throughput methods for structural determination of recombinan t proteins, focusing on the so-called low-hanging fruit , i.e. proteins which are expressed at high levels as soluble, correctly folded species in E. coli, and which are relatively easily purified and crystallized. However, many targets important for huma n health, such as mammalian regulatory and membrane proteins, have thus far been left behind as high-hanging fruit due to difficulties with one or more steps in the process. One major hurdle is the fact that many of these proteins are poorly expressed an d/or undergo aberrant folding in E. coli, necessitating the use of eukaryotic systems, such as insect cells, as the expression host. The use of more complex expression systems introduces additional challenges for purification due to the higher proportion o f non-target and interfering proteins in cellular extracts. In these cases the affinity purification schemes developed for bacterial-expressed proteins fail to produce the purity required for structural analysis, necessitating additional purification steps which are expensive and difficult to automate. To address this problem, we will test the concept of adapting a simulated moving bed (SMB) approach to the multi- milligram scale purification of recombinant proteins by immobilized metal affinity chromatogra phy (IMAC). In the SMB method, the solid phase moves in a countercurrent direction relative to the liquid flow in a continuous loop. Multiple chromatographic cells are arranged in a series with continuous input of feed and eluant streams and continuous out put of raffinate and eluate streams. The most tightly bound species are released first, reducing retention time of bound species and minimizing peak dispersion. Elution of purified target species can be easily optimized by adjustment of buffer composition and flow parameters, such that the system continuously resolves the strongest binding species from weakly- and non-binding species. Historically, SMB chromatography has been almost exclusively applied to large-scale binary separations of small molecule iso mers. We will first develop a prototype mini-SMB device that overcomes previous mechanical barriers related to scaled-down SMB devices, and then we will test the device vs. standard methods in IMAC purification of three oligohistidine-tagged recombinant human kinases expressed in insect cells. Our project will determine if the inherent advantages of SMB chromatography can be successfully applied to IMAC purification of high-value recombinant proteins at the multi-milligram scale. This proposal describ es a novel device and method that would facilitate the isolation of proteins of sufficient purity and quantity for reliable structural analysis. The determination of detailed atomic structures of the thousands of proteins that comprise human cells will gre atly increase our understanding of the fundamental mechanisms of normal and disease states. Such information will lead to the discovery of new therapies and pharmaceuticals that can be precisely targeted to specific cellular pathways and/or proteins for mo re effective disease management.

Principal Investigator:

Robert C. Mierendorf

Business Contact:

Robert Mierendorf
Small Business Information at Submission:


EIN/Tax ID: 120288232
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No