USA flag logo/image

An Official Website of the United States Government

Superhard Nanocrystalline Coated Prosthesis

Award Information

Agency:
Department of Health and Human Services
Branch:
N/A
Award ID:
66068
Program Year/Program:
2003 / SBIR
Agency Tracking Number:
AR045120
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Spire Corporation
One Patriots Park Bedford, MA 01730-2396
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2003
Title: Superhard Nanocrystalline Coated Prosthesis
Agency: HHS
Contract: 2R44AR045120-02A2
Award Amount: $0.00
 

Abstract:

DESCRIPTION (provided by applicant): Nanocrystalline homometallic (same as the substrate and without interface) coatings will be developed to reduce wear of ultra-high molecular weight polyethylene (UHMWPE) in orthopedic prostheses. UHMWPE wear is a primary cause of prosthesis failure, and roughness of the mating Co-Cr surface has been identified as a major contributing factor to UHMWPE wear. Third-body wear particles, such as bone cement constituents, scratch the articulating surface, roughening it and accelerating UHMWPE wear. Attempts to apply conventional hard ceramic coatings to the metallic surfaces have not been successful because of difficulties in achieving adequate adhesion due to dissimilarity of coating and substrate materials and thermal and lattice mismatches. We have demonstrated, for the first time, that nanocrystalline (3-40 nm grains) Co-Or deposited onto Co-Cr-Mo substrates possesses hardness close to that of some ceramics (18-26 GPa, 400% increase), without the associated problems with adhesion to metallic substrates. (Similar results have also been obtained for Ti and stainless steel). In post Phase I work, we have demonstrated uniform deposition of superhard homometallic coatings onto Co-Cr femoral hip heads. Ongoing hip simulation tests have demonstrated up to 75% reduction in UHWMPE wear against homometallic Co-Or femoral heads vs. uncoated Co-Cr. Additionally, atomic force microscopy shows that the homometallic coatings retain the same low surface roughness as the original, highly polished Co-Cr. These results clearly demonstrate feasibility of the proposed technology. Phase 2 will optimize the processes involved in deposition of homometallic coatings and evaluate them in Hip Simulation tests, which will be done by Stephen Li at the Medical Device Testing and Innovation and a major Orthopedic Company.

Principal Investigator:

Eric J. Tobin
7812756000
ETOBIN@SPIRECORP.COM

Business Contact:

Mark Little
7812756000
MLITTLE@SPIRECORP.COM
Small Business Information at Submission:

SPIRE CORPORATION
SPIRE CORPORATION 1 PATRIOTS PARK BEDFORD, MA 01730

EIN/Tax ID: 042457335
DUNS: N/A
Number of Employees: N/A
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No