USA flag logo/image

An Official Website of the United States Government

Aeroservothermoelastic Modeling for a Hypersonic Wave Rider Vehicle

Award Information

Agency:
Department of Defense
Branch:
Air Force
Award ID:
73419
Program Year/Program:
2005 / STTR
Agency Tracking Number:
F054-027-0042
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Stirling Dynamics Incorporated
4030 Lake Washington Blvd NE Suite 205 Kirkland, WA -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2005
Title: Aeroservothermoelastic Modeling for a Hypersonic Wave Rider Vehicle
Agency / Branch: DOD / USAF
Contract: FA9550-05-C-0143
Award Amount: $99,999.00
 

Abstract:

Development of an innovative analysis and software modeling capability is proposed for aeroservothermoelastic evaluation of air-breathing hypersonic wave rider vehicles. The interface of the airframe dynamic vibration modes with highly nonlinear hypersonic flows is modeled using a particle-based material point method (MPM) in an integrated dynamic fluid-structure environment. MPM is essentially a mesh-free method, which avoids dealing with time-varying mesh distortions and boundary variations due to static and dynamic structural deformations, thus being significantly more robust and computationally efficient than other numerical methods and algorithms, such as the finite element method that is currently favored for fluid-structure interaction simulations. Performance is further enhanced by nonlinear model reduction, massive parallelization, in-situ residual monitoring and computational steering. Inclusion of the flight control system gives a complete integrated aeroservothermoelastic capability covering all flight regimes, and accounting for the aeroelastic effects of dynamic shock/structure interactions and TPS/ablation, as well as real gas effects. The FCS will be represented in full nonlinear detail, and model linearization is also proposed to enable the application of conventional FCS design procedures. Phase I is aimed at establishing basic feasibility and an initial capability. Phase II will extend the research into more detailed developments, leading to a full capability.

Principal Investigator:

Robert Stirling
President
4258277476
rstirling@stirling-dynamics.com

Business Contact:

Dennis Messenger
Business Development Manager
4258277476
dmessenger@stirling-dynamics.com
Small Business Information at Submission:

Stirling Dynamics, Inc.
4030 Lake Washington Blvd NE, Suite 205 Kirkland, WA 98033

EIN/Tax ID: 330641939
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Research Institution Information:
THE UNIV. OF UTAH
201 South President's Circle, Room 201
Salt Lake City, UT 84112
Contact: Patrick G. Hu
Contact Phone: (801) 585-1547
RI Type: Nonprofit college or university