USA flag logo/image

An Official Website of the United States Government

Simulations of Waveguide Breakdown

Award Information

Department of Energy
Award ID:
Program Year/Program:
2008 / SBIR
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Tech-X Corporation
5621 Arapahoe Ave, Suite A Boulder, CO -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Phase 2
Fiscal Year: 2008
Title: Simulations of Waveguide Breakdown
Agency: DOE
Contract: DE-FG02-07ER84833
Award Amount: $749,515.00


Future neutrino experiments will require neutrino beam intensities beyond the capabilities of today's sources. These experiments will require high-energy neutrinos from muon decay. The muons need to be cooled, and, in order to reduce costs, the number of cooling elements should minimized. However, breakdown of the accelerating cavities is expected to limit the performance of any proposed beam system. This project will help researchers use simulation to understand the breakdown of metallic structures planned for muon beam systems, enabling them to reduce the length and thereby the cost of future accelerators. It will implement new physics algorithms relevant to breakdown and add them to an existing library of routines developed to model plasma/material interactions. The project will also make existing codes easier to use for non-experts.The Phase I project successfully modeled breakdown with parameters relevant to present muon cooling systems using two well-known commercial particle-in-cell codes. It also improved the user interface to one of the codes by improving the parallel computing features, allowing users to get answers more quickly. The work demonstrated the utility of these code enhancements by successfully modeling breakdown near a micron-sized surface imperfection with applied magnetic field for conditions similar to copper cavities presently being tested by muon collider researchers. The Phase II project will extend the physics algorithms improvements and improvements to the code user interface. Commercial Applications and other Benefits as described by the awardee: Routines implemented here, such as plasma radiation effects and models of multiple ionization processes, are important to the Air Force community and to researchers developing more energy-efficient commercial lighting.

Principal Investigator:

Seth A. Veitzer

Business Contact:

Laurence D. Nelson
Small Business Information at Submission:

Tech-x Corporation
5621 Arapahoe Avenue Suite A Boulder, CO 80303

EIN/Tax ID: 841256533
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No