USA flag logo/image

An Official Website of the United States Government

Multilayer Fiber Interfaces for Improved Environmental Resistance and Slip

Award Information

Agency:
National Aeronautics and Space Administration
Branch:
N/A
Award ID:
62153
Program Year/Program:
2003 / SBIR
Agency Tracking Number:
024136
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Ultramet
12173 Montague Street Pacoima, CA -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2003
Title: Multilayer Fiber Interfaces for Improved Environmental Resistance and Slip
Agency: NASA
Contract: NAS8-03010
Award Amount: $70,000.00
 

Abstract:

Application of ceramic matrix composites (CMC) reinforced with carbon fibers can potentially enhance the efficiency and performance, reduce the weight, improve the durability, and lower the cost of rocket engine combustion devices and turbomachinery components used in high temperature, high-stress environments. Meeting these objectives requires improvements in fiber-reinforced CMC materials and fabrication processes, particularly improved fiber/matrix interfaces, interface deposition processes, and oxidation protection. Although carbon fibers are most desirable as CMC reinforcements, their low oxidation resistance has prevented their use in high temperature oxidizing environments. In previous work, Ultramet developed a unique and innovative process, ultraviolet-enhanced chemical vapor deposition (UVCVD), which allows deposition of dense, strain-tolerant oxides at room temperature, thus avoiding heat-induced material degradation and providing excellent material performance, including enhanced oxidation protection. However, identifying a single phase that best performs the two key functions of the interface coating, oxidation protection and interface slip, simultaneously has thus far proven elusive. In this project, the UVCVD process will be developed specifically for deposition of multilayered interface coatings in which separate components will perform these two functions, resulting in optimum composite performance.

Principal Investigator:

Jason R. Babcock,
8188990236
jason.babcock@ultramet.com

Business Contact:

Craig N. Ward
Engineering Administrative Mgr
8188990236
craig.ward@ultramet.com
Small Business Information at Submission:

Ultramet
12173 Montague St Pacoima, CA 91331

EIN/Tax ID: 952662293
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No