USA flag logo/image

An Official Website of the United States Government

Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid…

Award Information

Agency:
National Aeronautics and Space Administration
Branch:
N/A
Award ID:
68934
Program Year/Program:
2005 / SBIR
Agency Tracking Number:
034897
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Ultramet
12173 Montague Street Pacoima, CA 91331-2210
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2005
Title: Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers, Phase II
Agency: NASA
Contract: NNJ05JA08C
Award Amount: $600,000.00
 

Abstract:

Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good combination of temperature capability, density, and cost, while the silicide coating has been successful in providing moderate oxidation resistance and use temperature. However, for many current applications the silicide coating is now proving to be the limiting factor in achieving the required chamber performance and/or lifetime, and the chamber manufacturing cost is excessive. NASA is seeking advanced bipropellant propulsion systems for Earth science spacecraft and space exploration vehicles, while DoD is seeking economical and high-performance bipropellant thrusters for liquid divert and attitude control systems in kinetic energy kill vehicles for ballistic missile defense (a high-volume application). These goals cannot be achieved using standard silicided C103 chambers. In this project, Ultramet proposes to develop and demonstrate a combustion chamber with substantially improved manufacturability, cost, and performance. In Phase I, Ultramet successfully demonstrated both improved chamber manufacturing and a more robust and higher performance oxidation-resistant coating as a replacement for the silicide. This was accomplished through a unique manufacturing process involving low temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin vapor-deposited platinum coatings we

Principal Investigator:

Brian E. Williams
8188990236
brian.williams@ultramet.com

Business Contact:

Craig N. Ward
Engineering Administrative Mgr
8188990236
craig.ward@ultramet.com
Small Business Information at Submission:

Ultramet
12173 Montague Street Pacoima, CA 91331

EIN/Tax ID: 952662293
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No