USA flag logo/image

An Official Website of the United States Government

Automated Feature Extraction from Hyperspectral Imagery

Award Information

Agency:
National Aeronautics and Space Administration
Branch:
N/A
Award ID:
77721
Program Year/Program:
2007 / SBIR
Agency Tracking Number:
054506
Solicitation Year:
N/A
Solicitation Topic Code:
N/A
Solicitation Number:
N/A
Small Business Information
Visual Learning Systems, Inc.
1719 Dearborn Avenue Missoula, MT 59801-2391
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 2
Fiscal Year: 2007
Title: Automated Feature Extraction from Hyperspectral Imagery
Agency: NASA
Contract: NNS07AA10C
Award Amount: $600,000.00
 

Abstract:

The proposed activities will result in the development of a novel hyperspectral feature-extraction toolkit that will provide a simple, automated, and accurate approach to materials classification from hyperspectral imagery (HSI). The proposed toolkit will be built as an extension to the state-of-the-art technology in automated feature extraction (AFE), the Feature Analyst software suite, which was developed by the proposing company. Feature Analyst uses, along with spectral information, feature characteristics such as spatial association, size, shape, texture, pattern, and shadow in its generic AFE process. Incorporating the best AFE approach (Feature Analyst) with the best HSI techniques promises to greatly increase the usefulness and applicability of HSI. While current HSI techniques, such as spectral end-member classification, can provide effective materials classification, these methods are slow (or manual), cumbersome, complex for analysts, and are limited to materials classification only. Feature Analyst, on the other hand, has a simple workflow of (a) an analyst providing a few examples, and (b) an advanced software agent classifying the rest of the imagery. This simple yet powerful approach will become the new paradigm for HSI materials classification since Phase I experiments show it is (a) accurate, (b) simple, (c) advanced, and (d) exists as workflow extension to market leading products. The deliverables of this proposal will allow HSI products to be fully exploited for the first time by a wide range of users.

Principal Investigator:

Stuart L. Blundell
Principal Investigator
4068291384
sblundell@vls-inc.com

Business Contact:

James S. Blundell
CEO
4068291384
sblundell@vls-inc.com
Small Business Information at Submission:

Visual Learning Systems, Inc.
1719 Dearborn Avenue Missoula, MT 59801

EIN/Tax ID: 810529309
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No