USA flag logo/image

An Official Website of the United States Government

SBIR Phase I: Novel Microarray Platforms For Detection Of Rare Molecules In…

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
Program Year/Program:
2011 / SBIR
Agency Tracking Number:
1046667
Solicitation Year:
2010
Solicitation Topic Code:
BC
Solicitation Number:
Small Business Information
Maine Manufacturing LLC
63 Community Drive Sanford, ME 04073-5809
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2011
Title: SBIR Phase I: Novel Microarray Platforms For Detection Of Rare Molecules In Complex Mixtures
Agency: NSF
Contract: 1046667
Award Amount: $149,499.00
 

Abstract:

This Small Business Innovation Research (SBIR) Phase I project proposes to construct a new microarray platform with high protein binding capacity that allows for enhanced fluorescence detection. Limitations of existing microarray surfaces include platform-based optical interferences and limited or ineffective binding capacity for biomolecules. These limit the ultimate sensitivity of binding reactions mounted on existing microarray surfaces. We will construct a composite or modified surface in two ways. First, by casting nitrocellulose (a polymer able to bind many different biomolecules essentially irreversibly) on an optically transparent porous track-etched membrane. We believe this new surface will maintain some properties of both starting materials. By varying the pore structure of the track-etched membrane, we will optimize the resulting membranes ability to capture complex protein mixtures and permit sensitive fluorescent detection. Secondly, we will directly modify the track-etched membrane with functional silanes to provide chemical groups permitting covalent coupling of proteins and nucleic acids. This approach should prove beneficial to maintain the optical compatibility of the original track-etched structure. This type of modified, optically transparent track-etched membrane may be optimal for antibody arrays where the capture molecule can be immobilized at a sufficient density to provide a sensitive assay surface. The broader impact/commercial potential of this project will be to provide the basis for a new analytical tool that will allow establishment of antibody- and antigen-based assays of enhanced sensitivity. It also will provide an innovative surface to capture quantitatively the biochemical components of complex mixtures in such a way as to permit the detection of rare molecules. Microarrays play an increasingly important role in bioscience research, disease, and drug discovery processes as well as in human and animal diagnostics. They provide parallel processing tools required to extract multiple values from small amounts of precious clinical and research samples. Microarrays with enhanced sensitivity will permit the detection of rare biomolecules that may be involved in cellular regulation, cellular differentiation, and disease mechanisms. Reverse phase protein arrays (RPPA) are important for understanding cellular changes in a variety of disease states. In cancer, for example, lysates from small numbers of tumor cells can be spotted on a surface and then interrogated with many different antibodies to elucidate protein expression patterns in these tumor cell populations. The power of these techniques will be enhanced significantly by having a platform able to support the most sensitive assays.

Principal Investigator:

Michael Harvey
2018557326
mike.harvey@mfgmaine.com

Business Contact:

Michael Harvey
PhD
2018557326
mike.harvey@mfgmaine.com
Small Business Information at Submission:

Maine Manufacturing LLC
63 Community Drive Sanford, ME 04073-5809

EIN/Tax ID: 205731921
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No