USA flag logo/image

An Official Website of the United States Government

SBIR Phase I: High Efficiency Electrochemical Compressor Cell to Enable Cost…

Award Information

Agency:
National Science Foundation
Branch:
N/A
Award ID:
Program Year/Program:
2011 / SBIR
Agency Tracking Number:
1113495
Solicitation Year:
2010
Solicitation Topic Code:
BC
Solicitation Number:
Small Business Information
Proton Energy Systems
10 Technology Drive Wallingford, CT -
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2011
Title: SBIR Phase I: High Efficiency Electrochemical Compressor Cell to Enable Cost Effective Small-Scale Hydrogen Fuel Production and Recycling
Agency: NSF
Contract: 1113495
Award Amount: $150,000.00
 

Abstract:

Review Analysis This Small Business Innovation Research Phase I project addresses current limitations in hydrogen compression and enables reduction in hydrogen requirements for several applications through recycling of exhaust hydrogen containing water and other benign impurities. This project will demonstrate the feasibility of operating a proton exchange membrane (PEM)-based device as a high efficiency electrochemical compressor/purifier. Advantages over previous research in PEM-based hydrogen pumps include use of a microporous plate for improved water distribution, which will enable more uniform fluid distribution and high current densities. The objectives of this phase include demonstration of a prototype cell, determining the separation efficiency of a prototype device as a function of output pressure, and developing design boundaries for optimization in Phase 2 and integration into a system. Cell stack design experience along with the improved plate technology will be utilized in order to address current limitations due to local membrane dryout. The anticipated result will be an improved hydrogen recycler which will enable substantial reduction in hydrogen production cost and new market opportunities. The broader impact/commercial potential of this project includes applications ranging from power plants to heat treating to backup power and fueling. For example, over 16,000 power plants worldwide use hydrogen as a cooling fluid in the turbine windings. Currently, increases in dew point cause significant decreases in cooling efficiency and increase windage losses by several percent, requiring purging of the hydrogen chamber and increased production to backfill. Thus, significant energy waste is generated. Current solutions for hydrogen compression are also noisy, bulky, and inefficient. In applications where hydrogen is being evaluated as an alternative fuel, high pressure storage is needed. Having a mechanical compressor that represents half of the size and material cost of a home fueling or backup power device is not commercially feasible. The device proposed has the opportunity to decrease the energy required to produce pure hydrogen by 75% over generating additional hydrogen from water, and to compress the hydrogen with as little as 100 mV of overpotential even at high current density. Advances in these areas would find immediate commercial interest, and address key strategic areas on the government agenda related to energy savings and green technology.

Principal Investigator:

Kathy Ayers
2036782190
kayers@protonenergy.com

Business Contact:

Kathy Ayers
2036782190
kayers@protonenergy.com
Small Business Information at Submission:

Proton Energy Systems, Inc
10 Technology Drive Wallingford, CT 06492-1955

EIN/Tax ID: 061461988
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No