USA flag logo/image

An Official Website of the United States Government

Lightweight, Radiation Resistant, Low Tg, Thoraeus Rubber Inflatable Space…

Award Information

Agency:
National Aeronautics and Space Administration
Branch:
N/A
Award ID:
Program Year/Program:
2011 / STTR
Agency Tracking Number:
100140
Solicitation Year:
2010
Solicitation Topic Code:
T6.01
Solicitation Number:
Small Business Information
Nanosonic, Inc.
158 Wheatland Drive Pembroke, VA 24136-3645
View profile »
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
 
Phase 1
Fiscal Year: 2011
Title: Lightweight, Radiation Resistant, Low Tg, Thoraeus Rubber Inflatable Space Habitats
Agency: NASA
Contract: NNX11CI21P
Award Amount: $100,000.00
 

Abstract:

NanoSonic's Shape Memory Metal Rubber<SUP>TM</SUP> (SM-MR) exhibits reconfigurable and recoverable changes in structural and RF properties as it can be mechanically and repeatedly inflated without loss of EMI shielding (-88dB). In support of NASA's goals for a robust space exploration program, it is anticipated that NanoSonic's lightweight low permeable bladders shall also exhibit long term radiation resistance upon morphing; a property that few, if any, inflatable materials offer. Typical highly filled or metal evaporated nanocomposites crack upon flexing. Conformal and compliant SM-MR is based on self-assembled high-z, dense, nanoparticles covalently bound to ultra-low glass transition temperature (as low as -145 & #61616;C, 128 Kelvin) elastomeric or shape memory polymers. NanoSonic and our STTR partner, Colorado State University, have demonstrated that SM-MR is up to 50% lighter in weight and provides greater gamma ray attenuation relative to commercial shielding materials, without emitting harmful secondary radiation under a 137Cs source. During Phase I, low temperature flexibility, and radiation/micrometeorite (lunar dust) resistance would be verified under simulated Galactic Cosmic Radiation (GCR) conditions, using gamma radiation sources and an electron accelerator with uniform beams up to 20 MeV. TRL9 shall be reached with our space systems partner upon infusion of Thoraeus Rubber<SUP>TM</SUP> onto NASA habitats.

Principal Investigator:

Jennifer H. Lalli
Principal Investigator
5406266266
jlalli@nanosonic.com

Business Contact:

Lisa B. Lawson
Contracts Administrator
5406266266
llawson@nanosonic.com
Small Business Information at Submission:

Nanosonic, Inc.
158 Wheatland Drive Pembroke, VA -

EIN/Tax ID: 541877635
DUNS: N/A
Number of Employees:
Woman-Owned: No
Minority-Owned: No
HUBZone-Owned: No
Research Institution Information:
CSU
1618 Campus Delivery
Ft Collins, CO 80523-3126
Contact: Thom Borak